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Preface

This edited volume collects and unifies a number of recent advances in the signal-processing
and machine-learning literature with significant applications in financial risk and portfolio
management. The topics in the volume include characterizing statistical dependence and cor-
relation in high dimensions, constructing effective and robust risk measures, and using these
notions of risk in portfolio optimization and rebalancing through the lens of convex optimiza-
tion. It also presents signal-processing approaches to model return, momentum, and mean
reversion, including both theoretical and implementation aspects. Modern finance has become
global and highly interconnected. Hence, these topics are of great importance in portfolio
management and trading, where the financial industry is forced to deal with large and diverse
portfolios in a variety of asset classes. The investment universe now includes tens of thou-
sands of international equities and corporate bonds, and a wide variety of other interest rate
and derivative products-often with limited, sparse, and noisy market data.

Using traditional risk measures and return forecasting (such as historical sample covariance
and sample means in Markowitz theory) in high-dimensional settings is fraught with peril for
portfolio optimization, as widely recognized by practitioners. Tools from high-dimensional
statistics, such as factor models, eigen-analysis, and various forms of regularization that
are widely used in real-time risk measurement of massive portfolios and for designing
a variety of trading strategies including statistical arbitrage, are highlighted in the book.
The dramatic improvements in computational power and special-purpose hardware such as
field programmable gate arrays (FPGAs) and graphics processing units (GPUs) along with
low-latency data communications facilitate the realization of these sophisticated financial
algorithms that not long ago were “hard to implement.”

The book covers a number of topics that have been popular recently in machine learning
and signal processing to solve problems with large portfolios. In particular, the connections
between the portfolio theory and sparse learning and compressed sensing, robust optimiza-
tion, non-Gaussian data-driven risk measures, graphical models, causal analysis through
temporal-causal modeling, and large-scale copula-based approaches are highlighted in
the book.

Although some of these techniques already have been used in finance and reported in jour-
nals and conferences of different disciplines, this book attempts to give a unified treatment
from a common mathematical perspective of high-dimensional statistics and convex optimiza-
tion. Traditionally, the academic quantitative finance community did not have much overlap
with the signal and information-processing communities. However, the fields are seeing more
interaction, and this trend is accelerating due to the paradigm in the financial sector which has
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xvi Preface

embraced state-of-the-art, high-performance computing and signal-processing technologies.
Thus, engineers play an important role in this financial ecosystem. The goal of this edited
volume is to help to bridge the divide, and to highlight machine learning and signal processing
as disciplines that may help drive innovations in quantitative finance and electronic trading,
including high-frequency trading.

The reader is assumed to have graduate-level knowledge in linear algebra, probability, and
statistics, and an appreciation for the key concepts in optimization. Each chapter provides a
list of references for readers who would like to pursue the topic in more depth. The book,
complemented with a primer in financial engineering, may serve as the main textbook for a
graduate course in financial signal processing.

We would like to thank all the authors who contributed to this volume as well as all of the
anonymous reviewers who provided valuable feedback on the chapters in this book. We also
gratefully acknowledge the editors and staff at Wiley for their efforts in bringing this project
to fruition.
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1
Overview
Financial Signal Processing and Machine
Learning

Ali N. Akansu1, Sanjeev R. Kulkarni2, and Dmitry Malioutov3

1New Jersey Institute of Technology, USA
2Princeton University, USA
3IBM T.J. Watson Research Center, USA

1.1 Introduction

In the last decade, we have seen dramatic growth in applications for signal-processing and
machine-learning techniques in many enterprise and industrial settings. Advertising, real
estate, healthcare, e-commerce, and many other industries have been radically transformed
by new processes and practices relying on collecting and analyzing data about operations,
customers, competitors, new opportunities, and other aspects of business. The financial
industry has been one of the early adopters, with a long history of applying sophisticated
methods and models to analyze relevant data and make intelligent decisions – ranging
from the quadratic programming formulation in Markowitz portfolio selection (Markowitz,
1952), factor analysis for equity modeling (Fama and French, 1993), stochastic differential
equations for option pricing (Black and Scholes, 1973), stochastic volatility models in risk
management (Engle, 1982; Hull and White, 1987), reinforcement learning for optimal trade
execution (Bertsimas and Lo, 1998), and many other examples. While there is a great deal of
overlap among techniques in machine learning, signal processing and financial econometrics,
historically, there has been rather limited awareness and slow permeation of new ideas among
these areas of research. For example, the ideas of stochastic volatility and copula modeling,
which are quite central in financial econometrics, are less known in the signal-processing
literature, and the concepts of sparse modeling and optimization that have had a transformative
impact on signal processing and statistics have only started to propagate slowly into financial

Financial Signal Processing and Machine Learning, First Edition.
Edited by Ali N. Akansu, Sanjeev R. Kulkarni and Dmitry Malioutov.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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applications. The aim of this book is to raise awareness of possible synergies and interactions
among these disciplines, present some recent developments in signal processing and machine
learning with applications in finance, and also facilitate interested experts in signal processing
to learn more about applications and tools that have been developed and widely used by the
financial community.

We start this chapter with a brief summary of basic concepts in finance and risk manage-
ment that appear throughout the rest of the book. We present the underlying technical themes,
including sparse learning, convex optimization, and non-Gaussian modeling, followed by brief
overviews of the chapters in the book. Finally, we mention a number of highly relevant topics
that have not been included in the volume due to lack of space.

1.2 A Bird’s-Eye View of Finance

The financial ecosystem and markets have been transformed with the advent of new tech-
nologies where almost any financial product can be traded in the globally interconnected
cyberspace of financial exchanges by anyone, anywhere, and anytime. This systemic change
has placed real-time data acquisition and handling, low-latency communications technologies
and services, and high-performance processing and automated decision making at the core
of such complex systems. The industry has already coined the term big data finance, and it is
interesting to see that technology is leading the financial industry as it has been in other sectors
like e-commerce, internet multimedia, and wireless communications. In contrast, the knowl-
edge base and exposure of the engineering community to the financial sector and its relevant
activity have been quite limited. Recently, there have been an increasing number of publica-
tions by the engineering community in the finance literature, including A Primer for Financial
Engineering (Akansu and Torun, 2015) and research contributions like Akansu et al., (2012)
and Pollak et al., (2011). This volume facilitates that trend, and it is composed of chapter
contributions on selected topics written by prominent researchers in quantitative finance and
financial engineering.

We start by sketching a very broad-stroke view of the field of finance, its objectives, and
its participants to put the chapters into context for readers with engineering expertise. Finance
broadly deals with all aspects of money management, including borrowing and lending, trans-
fer of money across continents, investment and price discovery, and asset and liability manage-
ment by governments, corporations, and individuals. We focus specifically on trading where
the main participants may be roughly classified into hedgers, investors, speculators, and market
makers (and other intermediaries). Despite their different goals, all participants try to balance
the two basic objectives in trading: to maximize future expected rewards (returns) and to min-
imize the risk of potential losses.

Naturally, one desires to buy a product cheap and sell it at a higher price in order to achieve
the ultimate goal of profiting from this trading activity. Therefore, the expected return of an
investment over any holding time (horizon) is one of the two fundamental performance met-
rics of a trade. The complementary metric is its variation, often measured as the standard
deviation over a time window, and called investment risk or market risk.1 Return and risk are
two typically conflicting but interwoven measures, and risk-normalized return (Sharpe ratio)

1 There are other types of risk, including credit risk, liquidity risk, model risk, and systemic risk, that may also need
to be considered by market participants.
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finds its common use in many areas of finance. Portfolio optimization involves balancing
risk and reward to achieve investment objectives by optimally combining multiple financial
instruments into a portfolio. The critical ingredient in forming portfolios is to characterize the
statistical dependence between prices of various financial instruments in the portfolio. The
celebrated Markowitz portfolio formulation (Markowitz, 1952) was the first principled mathe-
matical framework to balance risk and reward based on the covariance matrix (also known
as the variance-covariance or VCV matrix in finance) of returns (or log-returns) of finan-
cial instruments as a measure of statistical dependence. Portfolio management is a rich and
active field, and many other formulations have been proposed, including risk parity portfolios
(Roncalli, 2013), Black–Litterman portfolios (Black and Litterman, 1992), log-optimal port-
folios (Cover and Ordentlich, 1996), and conditional value at risk (cVaR) and coherent risk
measures for portfolios (Rockafellar and Uryasev, 2000) that address various aspects ranging
from the difficulty of estimating the risk and return for large portfolios to the non-Gaussian
nature of financial time series, and to more complex utility functions of investors.

The recognition of a price inefficiency is one of the crucial pieces of information to trade
that product. If the price is deemed to be low based on some analysis (e.g. fundamental or
statistical), an investor would like to buy it with the expectation that the price will go up in
time. Similarly, one would shortsell it (borrow the product from a lender with some fee and
sell it at the current market price) when its price is forecast to be higher than what it should be.
Then, the investor would later buy to cover it (buy from the market and return the borrowed
product back to the lender) when the price goes down. This set of transactions is the building
block of any sophisticated financial trading activity. The main challenge is to identify price
inefficiencies, also called alpha of a product, and swiftly act upon it for the purpose of mak-
ing a profit from the trade. The efficient market hypothesis (EMH) stipulates that the market
instantaneously aggregates and reflects all of the relevant information to price various securi-
ties; hence, it is impossible to beat the market. However, violations of the EMH assumptions
abound: unequal availability of information, access to high-speed infrastructure, and various
frictions and regulations in the market have fostered a vast and thriving trading industry.

Fundamental investors find alpha (i.e., predict the expected return) based on their knowl-
edge of enterprise strategy, competitive advantage, aptitude of its leadership, economic and
political developments, and future outlook. Traders often find inefficiencies that arise due
to the complexity of market operations. Inefficiencies come from various sources such as
market regulations, complexity of exchange operations, varying latency, private sources of
information, and complex statistical considerations. An arbitrage is a typically short-lived
market anomaly where the same financial instrument can be bought at one venue (exchange)
for a lower price than it can be simultaneously sold at another venue. Relative value strategies
recognize that similar instruments can exhibit significant (unjustified) price differences.
Statistical trading strategies, including statistical arbitrage, find patterns and correlations in
historical trading data using machine-learning methods and tools like factor models, and
attempt to exploit them hoping that these relations will persist in the future. Some market
inefficiencies arise due to unequal access to information, or the speed of dissemination of
this information. The various sources of market inefficiencies give rise to trading strategies
at different frequencies, from high-frequency traders who hold their positions on the order
of milliseconds, to midfrequency trading that ranges from intraday (holding no overnight
position) to a span of a few days, and to long-term trading ranging from a few weeks to years.
High-frequency trading requires state-of-the-art computing, network communications, and
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trading infrastructure: a large number of trades are made where each position is held for a
very short time period and typically produces a small return with very little risk. Longer term
strategies are less dependent on latency and sophisticated technology, but individual positions
are typically held for a longer time horizon and can pose substantial risk.

1.2.1 Trading and Exchanges

There is a vast array of financial instruments ranging from stocks and bonds to a variety of
more sophisticated products like futures, exchange-traded funds (ETFs), swaps, collateralized
debt obligations (CDOs), and exotic options (Hull, 2011). Each product is structured to serve
certain needs of the investment community. Portfolio managers create investment portfolios
for their clients based on the risk appetite and desired return. Since prices, expected returns,
and even correlations of products in financial markets naturally fluctuate, it is the portfolio
manager’s task to measure the performance of a portfolio and maintain (rebalance) it in order
to deliver the expected return.

The market for a security is formed by its buyers (bidding) and sellers (asking) with defined
price and order types that describe the conditions for trades to happen. Such markets for vari-
ous financial instruments are created and maintained by exchanges (e.g., the New York Stock
Exchange, NASDAQ, London Stock Exchange, and Chicago Mercantile Exchange), and they
must be compliant with existing trading rules and regulations. Other venues where trading
occurs include dark pools, and over-the-counter or interbank trading. An order book is like
a look-up table populated by the desired price and quantity (volume) information of traders
willing to trade a financial instrument. It is created and maintained by an exchange. Certain
securities may be simultaneously traded at multiple exchanges. It is a common practice that
an exchange assigns one or several market makers for each security in order to maintain the
robustness of its market.

The health (or liquidity) of an order book for a particular financial product is related to
the bid–ask spread, which is defined as the difference between the lowest price of sell orders
and the highest price of buy orders. A robust order book has a low bid–ask spread supported
with large quantities at many price levels on both sides of the book. This implies that there
are many buyers and sellers with high aggregated volumes on both sides of the book for
that product. Buying and selling such an instrument at any time are easy, and it is classified
as a high-liquidity (liquid) product in the market. Trades for a security happen whenever a
buyer–seller match happens and their orders are filled by the exchange(s). Trades of a product
create synchronous price and volume signals and are viewed as discrete time with irregu-
lar sampling intervals due to the random arrival times of orders at the market. Exchanges
charge traders commissions (a transaction cost) for their matching and fulfillment services.
Market-makers are offered some privileges in exchange for their market-making responsibili-
ties to always maintain a two-sided order book.

The intricacies of exchange operations, order books, and microscale price formation is the
study of market microstructure (Harris, 2002; O’Hara, 1995). Even defining the price for a
security becomes rather complicated, with irregular time intervals characterized by the ran-
dom arrivals of limit and market orders, multiple definitions of prices (highest bid price,
lowest ask price, midmarket price, quantity-weighted prices, etc.), and the price movements
occurring at discrete price levels (ticks). This kind of fine granularity is required for design-
ing high-frequency trading strategies. Lower frequency strategies may view prices as regular
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discrete-time time series (daily or hourly) with a definition of price that abstracts away the
details of market microstructure and instead considers some notion of aggregate transaction
costs. Portfolio allocation strategies usually operate at this low-frequency granularity with
prices viewed as real-valued stochastic processes.

1.2.2 Technical Themes in the Book

Although the scope of financial signal processing and machine learning is very wide, in this
book, we have chosen to focus on a well-selected set of topics revolving around the concepts of
high-dimensional covariance estimation, applications of sparse learning in risk management
and statistical arbitrage, and non-Gaussian and heavy-tailed measures of dependence.2

A unifying challenge for many applications of signal processing and machine learning is
the high-dimensional nature of the data, and the need to exploit the inherent structure in those
data. The field of finance is, of course, no exception; there, thousands of domestic equities and
tens of thousands of international equities, tens of thousands of bonds, and even more options
contracts with various strikes and expirations provide a very rich source of data. Modeling the
dependence among these instruments is especially challenging, as the number of pairwise rela-
tionships (e.g., correlations) is quadratic in the number of instruments. Simple traditional tools
like the sample covariance estimate are not applicable in high-dimensional settings where the
number of data points is small or comparable to the dimension of the space (El Karoui, 2013).
A variety of approaches have been devised to tackle this challenge – ranging from simple
dimensionality reduction techniques like principal component analysis and factor analysis, to
Markov random fields (or sparse covariance selection models), and several others. They rely on
exploiting additional structure in the data (sparsity or low-rank, or Markov structure) in order
to reduce the sheer number of parameters in covariance estimation. Chapter 1.3.5 provides
a comprehensive overview of high-dimensional covariance estimation. Chapter 1.3.4 derives
an explicit eigen-analysis for the covariance matrices of AR processes, and investigates their
sparsity.

The sparse modeling paradigm that has been highly influential in signal processing is based
on the premise that in many settings with a large number of variables, only a small subset
of these variables are active or important. The dimensionality of the problem can thus be
reduced by focusing on these variables. The challenge is, of course, that the identity of these
key variables may not be known, and the crux of the problem involves identifying this subset.
The discovery of efficient approaches based on convex relaxations and greedy methods with
theoretical guarantees has opened an explosive interest in theory and applications of these
methods in various disciplines spanning from compressed sensing to computational biology
(Chen et al., 1998; Mallat and Zhang, 1993; Tibshirani, 1996). We explore a few exciting
applications of sparse modeling in finance. Chapter 1.3.1 presents sparse Markowitz portfo-
lios where, in addition to balancing risk and expected returns, a new objective is imposed
requiring the portfolio to be sparse. The sparse Markowitz framework has a number of bene-
fits, including better statistical out-of-sample performance, better control of transaction costs,
and allowing portfolio managers and traders to focus on a small subset of financial instru-
ments. Chapter 1.3.2 introduces a formulation to find sparse eigenvectors (and generalized
eigenvectors) that can be used to design sparse mean-reverting portfolios, with applications

2 We refer the readers to a number of other important topics at the end of this chapter that we could not fit into the book.
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to statistical arbitrage strategies. In Chapter 1.3.3, another variation of sparsity, the so-called
group sparsity, is used in the context of causal modeling of high-dimensional time series. In
group sparsity, the variables belong to a number of groups, where only a small number of
groups is selected to be active, while the variables within the groups need not be sparse. In the
context of temporal causal modeling, the lagged variables at different lags are used as a group
to discover influences among the time series.

Another dominating theme in the book is the focus on non-Gaussian, non-stationary and
heavy-tailed distributions, which are critical for realistic modeling of financial data. The mea-
sure of risk based on variance (or standard deviation) that relies on the covariance matrix
among the financial instruments has been widely used in finance due to its theoretical elegance
and computational tractability. There is a significant interest in developing computational and
modeling approaches for more flexible risk measures. A very potent alternative is the cVaR,
which measures the expected loss below a certain quantile of the loss distribution (Rockafellar
and Uryasev, 2000). It provides a very practical alternative to the value at risk (VaR) mea-
sure, which is simply the quantile of the loss distribution. VaR has a number of problems such
as lack of coherence, and it is very difficult to optimize in portfolio settings. Both of these
shortcomings are addressed by the cVaR formulation. cVaR is indeed coherent, and can be
optimized by convex optimization (namely, linear programming). Chapter 1.3.9 describes the
very intriguing close connections between the cVaR measure of risk and support vector regres-
sion in machine learning, which allows the authors to establish out-of-sample results for cVaR
portfolio selection based on statistical learning theory. Chapter 1.3.9 provides an overview of
a number of regression formulations with applications in finance that rely on different loss
functions, including quantile regression and the cVaR metric as a loss measure.

The issue of characterizing statistical dependence and the inadequacy of jointly Gaussian
models has been of central interest in finance. A number of approaches based on elliptical
distributions, robust measures of correlation and tail dependence, and the copula-modeling
framework have been introduced in the financial econometrics literature as potential solutions
(McNeil et al., 2015). Chapter 1.3.7 provides a thorough overview of these ideas. Model-
ing correlated events (e.g., defaults or jumps) requires an entirely different set of tools. An
approach based on correlated Poisson processes is presented in Chapter 1.3.8. Another critical
aspect of modeling financial data is the handling of non-stationarity. Chapter 1.3.6 describes
the problem of modeling the non-stationarity in volatility (i.e. stochastic volatility). An alter-
native framework based on autoregressive conditional heteroskedasticity models (ARCH and
GARCH) is described in Chapter 1.3.7.

1.3 Overview of the Chapters

1.3.1 Chapter 2: “Sparse Markowitz Portfolios” by Christine De Mol

Sparse Markowitz portfolios impose an additional requirement of sparsity to the objec-
tives of risk and expected return in traditional Markowitz portfolios. The chapter starts
with an overview of the Markowitz portfolio formulation and describes its fragility in
high-dimensional settings. The author argues that sparsity of the portfolio can alleviate many
of the shortcomings, and presents an optimization formulation based on convex relaxations.
Other related problems, including sparse portfolio rebalancing and combining multiple
forecasts, are also introduced in the chapter.
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1.3.2 Chapter 3: “Mean-Reverting Portfolios: Tradeoffs between Sparsity
and Volatility” by Marco Cuturi and Alexandre d’Aspremont

Statistical arbitrage strategies attempt to find portfolios that exhibit mean reversion. A common
econometric tool to find mean reverting portfolios is based on co-integration. The authors
argue that sparsity and high volatility are other crucial considerations for statistical arbitrage,
and describe a formulation to balance these objectives using semidefinite programming (SDP)
relaxations.

1.3.3 Chapter 4: “Temporal Causal Modeling” by Prabhanjan Kambadur,
Aurélie C. Lozano, and Ronny Luss

This chapter revisits the old maxim that correlation is not causation, and extends the defini-
tion of Granger causality to high-dimensional multivariate time series by defining graphical
Granger causality as a tool for temporal causal modeling (TCM). After discussing compu-
tational and statistical issues, the authors extend TCM to robust quantile loss functions and
consider regime changes using a Markov switching framework.

1.3.4 Chapter 5: “Explicit Kernel and Sparsity of Eigen Subspace for the
AR(1) Process” by Mustafa U. Torun, Onur Yilmaz and Ali N. Akansu

The closed-form kernel expressions for the eigenvectors and eigenvalues of the AR(1) discrete
process are derived in this chapter. The sparsity of its eigen subspace is investigated. Then, a
new method based on rate-distortion theory to find a sparse subspace is introduced. Its superior
performance over a few well-known sparsity methods is shown for the AR(1) source as well
as for the empirical correlation matrix of stock returns in the NASDAQ-100 index.

1.3.5 Chapter 6: “Approaches to High-Dimensional Covariance
and Precision Matrix Estimation” by Jianqing Fan, Yuan Liao,
and Han Liu

Covariance estimation presents significant challenges in high-dimensional settings. The
authors provide an overview of a variety of powerful approaches for covariance estimation
based on approximate factor models, sparse covariance, and sparse precision matrix models.
Applications to large-scale portfolio management and testing mean-variance efficiency are
considered.

1.3.6 Chapter 7: “Stochastic Volatility: Modeling and Asymptotic
Approaches to Option Pricing and Portfolio Selection” by Matthew
Lorig and Ronnie Sircar

The dynamic and uncertain nature of market volatility is one of the important incarnations
of nonstationarity in financial time series. This chapter starts by reviewing the Black–Scholes



�

� �

�

8 Financial Signal Processing and Machine Learning

formulation and the notion of implied volatility, and discusses local and stochastic models of
volatility and their asymptotic analysis. The authors discuss implications of stochastic volatil-
ity models for option pricing and investment strategies.

1.3.7 Chapter 8: “Statistical Measures of Dependence for Financial Data”
by David S. Matteson, Nicholas A. James, and William B. Nicholson

Idealized models such as jointly Gaussian distributions are rarely appropriate for real financial
time series. This chapter describes a variety of more realistic statistical models to capture
cross-sectional and temporal dependence in financial time series. Starting with robust measures
of correlation and autocorrelation, the authors move on to describe scalar and vector models for
serial correlation and heteroscedasticity, and then introduce copula models, tail dependence,
and multivariate copula models based on vines.

1.3.8 Chapter 9: “Correlated Poisson Processes and Their Applications
in Financial Modeling” by Alexander Kreinin

Jump-diffusion processes have been popular among practitioners as models for equity deriva-
tives and other financial instruments. Modeling the dependence of jump-diffusion processes
is considerably more challenging than that of jointly Gaussian diffusion models where the
positive-definiteness of the covariance matrix is the only requirement. This chapter introduces
a framework for modeling correlated Poisson processes that relies on extreme joint distribu-
tions and backward simulation, and discusses its application to financial risk management.

1.3.9 Chapter 10: “CVaR Minimizations in Support Vector Machines”
by Junya Gotoh and Akiko Takeda

This chapter establishes intriguing connections between the literature on cVaR optimization
in finance, and the support vector machine formulation for regularized empirical risk mini-
mization from the machine-learning literature. Among other insights, this connection allows
the establishment of out-of-sample bounds on cVaR risk forecasts. The authors further discuss
robust extensions of the cVaR formulation.

1.3.10 Chapter 11: “Regression Models in Risk Management” by Stan
Uryasev

Regression models are one of the most widely used tools in quantitative finance. This chapter
presents a general framework for linear regression based on minimizing a rich class of error
measures for regression residuals subject to constraints on regression coefficients. The dis-
cussion starts with least squares linear regression, and includes many important variants such
as median regression, quantile regression, mixed quantile regression, and robust regression as
special cases. A number of applications are considered such as financial index tracking, sparse
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signal reconstruction, mutual fund return-based style classification, and mortgage pipeline
hedging, among others.

1.4 Other Topics in Financial Signal Processing and Machine Learning

We have left out a number of very interesting topics that all could fit very well within the scope
of this book. Here, we briefly provide the reader some pointers for further study.

In practice, the expected returns and the covariance matrices used in portfolio strategies are
typically estimated based on recent windows of historical data and, hence, pose significant
uncertainty. It behooves a careful portfolio manager to be cognizant of the sensitivity of port-
folio allocation strategies to these estimation errors. The field of robust portfolio optimization
attempts to characterize this sensitivity and propose strategies that are more stable with respect
to modeling errors (Goldfarb and Iyengar, 2003).

The study of market microstructure and the development of high-frequency trading strate-
gies and aggressive directional and market-making strategies rely on short-term predictions
of prices and market activity. A recent overview in Kearns and Nevmyvaka (2013) describes
many of the issues involved.

Managers of large portfolios such as pension funds and mutual funds often need to execute
very large trades that cannot be traded instantaneously in the market without causing a dramatic
market impact. The field of optimal order execution studies how to split a large order into
a sequence of carefully timed small orders in order to minimize the market impact but still
execute the order in a timely manner (Almgren and Chriss, 2001; Bertsimas and Lo, 1998).
The solutions for such a problem involve ideas from stochastic optimal control.

Various financial instruments exhibit specific structures that require dedicated mathemat-
ical models. For example, fixed income instruments depend on the movements of various
interest-rate curves at different ratings (Brigo and Mercurio, 2007), options prices depend on
volatility surfaces (Gatheral, 2011), and foreign exchange rates are traded via a graph of cur-
rency pairs. Stocks do not have such a rich mathematical structure, but they can be modeled
by their industry, style, and other common characteristics. This gives rise to fundamental or
statistical factor models (Darolles et al., 2013).

A critical driver for market activity is the release of news, reflecting developments in the
industry, economic, and political sectors that affect the price of a security. Traditionally, traders
act upon this information after reading an article and evaluating its significance and impact on
their portfolio. With the availability of large amounts of information online, the advent of nat-
ural language processing, and the need for rapid decision making, many financial institutions
have already started to explore automated decision-making and trading strategies based on
computer interpretation of relevant news (Bollen et al., 2011; Luss and d’Aspremont, 2008)
ranging from simple sentiment analysis to deeper semantic analysis and entity extraction.
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Sparse Markowitz Portfolios

Christine De Mol
Université Libre de Bruxelles, Belgium

2.1 Markowitz Portfolios

Modern portfolio theory originated from the work of Markowitz (1952), who insisted on the
fact that returns should be balanced with risk and established the theoretical basis for portfolio
optimization according to this principle. The portfolios are to be composed from a universe
of N securities with returns at time t given by ri,t, i = 1,… ,N, and assumed to be stationary.
We denote by E[rt] = 𝝁 the N × 1 vector of the expected returns of the different assets, and
by E[(rt − 𝝁)(rt − 𝝁)⊤] = C the covariance matrix of the returns (𝝁⊤ is the transpose of 𝝁).

A portfolio is characterized by a N × 1 vector of weights w = (𝑤1,… , 𝑤N)⊤, where 𝑤i is
the amount of capital to be invested in asset number i. Traditionally, it is assumed that a fixed
capital, normalized to one, is available and should be fully invested. Hence the weights are
required to sum to one:

∑N
i=1 𝑤i = 1, or else w⊤𝟏N = 1, where 𝟏N denotes the N × 1 vector with

all entries equal to 1. For a given portfolio w, the expected return is then equal to w⊤
𝝁, whereas

its variance, which serves as a measure of risk, is given by w⊤Cw. Following Markowitz, the
standard paradigm in portfolio optimization is to find a portfolio that has minimal variance for
a given expected return 𝜌 = w⊤

𝝁. More precisely, one seeks w∗ such that:

w∗ = arg min
w

w⊤Cw (2.1)

s. t. w⊤

𝝁 = 𝜌

w⊤𝟏N = 1.

The constraint that the weights should sum to one can be dropped when including also in
the portfolio a risk-free asset, with fixed return r0, in which one invests a fraction 𝑤0 of the
unit capital, so that

𝑤0 + w⊤𝟏N = 1. (2.2)
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The return of the combined portfolio is then given by

𝑤0r0 + w⊤rt = r0 + w⊤(rt − r0𝟏N). (2.3)

Hence we can reason in terms of “excess return” of this portfolio, which is given by w⊤r̃t
where the “excess returns” are defined as r̃t = rt − r0𝟏N . The “excess expected returns” are
then �̃� = E[̃rt] = E[rt] − r0𝟏N = 𝝁 − r0𝟏N . The Markowitz optimal portfolio weights in this
setting are solving

w̃∗ = arg min
w

w⊤Cw (2.4)

s. t. w⊤

�̃� = 𝜌

with the same covariance matrix as in (2.1) since the return of the risk-free asset is purely
deterministic instead of stochastic. The weight corresponding to the risk-free asset is adjusted
as �̃�∗,0 = 1 − w̃⊤

∗ 𝟏N (and is not included in the weight vector w̃∗). Introducing a Lagrange
parameter and fixing it in order to satisfy the linear constraint, one easily sees that

w̃∗ =
𝜌

�̃�
⊤C−1

�̃�

C−1
�̃� (2.5)

assuming that C is strictly positive definite so that its inverse exists. This means that, whatever
the value of the excess target return 𝜌, the weights of the optimal portfolio are proportional to
C−1

�̃�. The corresponding variance is given by

𝜎
2 = w̃⊤

∗ Cw̃∗ =
𝜌

2

�̃�
⊤C−1

�̃�

(2.6)

which implies that, when varying 𝜌, the optimal portfolios lie on a straight line in the plane
(𝜎, 𝜌), called the capital market line or efficient frontier, the slope of which is referred to as
the Sharpe ratio:

S =
𝜌

𝜎

=
√
�̃�
⊤C−1

�̃�. (2.7)

We also see that all efficient portfolios (i.e, those lying on the efficient frontier) can be obtained
by combining linearly the portfolio containing only the risk-free asset, with weight �̃�∗,0 = 1,
and any other efficient portfolio, with weights w̃∗. The weights of the efficient portfolio, which
contains only risky assets, are then derived by renormalization as w̃∗∕w̃⊤

∗ 𝟏N , with of course
�̃�∗,0 = 0. This phenomenon is often referred to as Tobin’s two-fund separation theorem. The
portfolios on the frontier to the right of this last portfolio require a short position on the risk-free
asset �̃�∗,0 < 0, meaning that money is borrowed at the risk-free rate to buy risky assets.

Notice that in the absence of a risk-free asset, the efficient frontier composed by the optimal
portfolios satisfying (2.1), with weights required to sum to one, is slightly more complicated:
it is a parabola in the variance – return plane (𝜎2

, 𝜌) that becomes a “Markowitz bullet” in
the plane (𝜎, 𝜌). By introducing two Lagrange parameters for the two linear constraints, one
can derive the expression of the optimal weights, which are a linear combination of C−1

𝝁 and
C−1𝟏N , generalizing Tobin’s theorem in the sense that any portfolio on the efficient frontier
can be expressed as a linear combination of two arbitrary ones on the same frontier.
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The Markowitz portfolio optimization problem can also be reformulated as a regression
problem, as noted by Brodie et al. (2009). Indeed, we have C = E[rtr

⊤

t ] − 𝝁𝝁⊤, so that the
minimization problem (2.1) is equivalent to

w∗ = arg min
w

E[|𝜌 − w⊤rt|2] (2.8)

s. t. w⊤

𝝁 = 𝜌

w⊤𝟏N = 1.

Let us remark that when using excess returns, there is no need to implement the constraints
since the minimization of E[|𝜌 − w̃⊤r̃t|2] (for any constant 𝜌) is easily shown to deliver weights
proportional to C−1

�̃�, which by renormalization correspond to a portfolio on the capital mar-
ket line.

In practice, for empirical implementations, one needs to estimate the returns as well as the
covariance matrix and to plug in the resulting estimates in all the expressions above. Usually,
expectations are replaced by sample averages (i.e., for the returns by �̂� = 1

T

∑T
t=1 rt and for

the covariance matrix by ̂C = 1
T

∑T
t=1[rtr

⊤

t ] − �̂��̂�
⊤).

For the regression formulation, we define R to be the T × N matrix of which row t is given
by r⊤t , namely Rt,i = (rt)i = ri,t. The optimization problem (2.8) is then replaced by

ŵ = arg min
w

1
T
‖𝜌𝟏T − Rw‖2

2 (2.9)

s. t. w⊤

�̂� = 𝜌

w⊤𝟏N = 1,

where ‖a‖2
2 denotes the squared Euclidean norm

∑T
t=1 a2

t of the vector a in ℝT .
There are many possible variations in the formulation of the Markowitz portfolio opti-

mization problem, but they are not essential for the message we want to convey. Moreover,
although lots of papers in the literature on portfolio theory have explored other risk measures,
for example more robust ones, we will only consider here the traditional framework where risk
is measured by the variance. For a broader picture, see for example the books by Campbell
et al. (1997) and Ruppert (2004).

2.2 Portfolio Optimization as an Inverse Problem: The Need
for Regularization

Despite its elegance, it is well known that the Markowitz theory has to face several difficulties
when implemented in practice, as soon as the number of assets N in the portfolio gets large.
There has been extensive effort in recent years to explain the origin of such difficulties and to
propose remedies. Interestingly, DeMiguel et al. (2009a) have assessed several optimization
procedures proposed in the literature and shown that, surprisingly, they do not clearly outper-
form the “naive” (also called “Talmudic”) strategy, which consists in attributing equal weights,
namely 1∕N, to all assets in the portfolio. The fact that this naive strategy is hard to beat—and
therefore constitutes a tough benchmark – is sometimes referred to as the 1∕N puzzle.
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A natural explanation for these difficulties comes in mind when noticing, as done by Brodie
et al. (2009), that the determination of the optimal weights solving problem (2.1) or (2.4) can
be viewed as an inverse problem, requiring the inversion of the covariance matrix C or, in
practice, of its estimate ̂C. In the presence of collinearity between the returns, this matrix is
most likely to be “ill-conditioned.” The same is true for the regression formulation (2.9) where
it is the matrix R⊤R which has to be inverted. Let us recall that the condition number of a matrix
is defined as the ratio of the largest to the smallest of its singular values (or eigenvalues when
it is symmetric). If this ratio is small, the matrix can be easily inverted, and the corresponding
weights can be computed numerically in a stable way. However, when the condition number
gets large, the usual numerical inversion procedures will deliver unstable results, due to the
amplification of small errors (e.g., rounding errors would be enough) in the eigendirections
correponding to the smallest singular or eigenvalues. Since, typically, asset returns tend to be
highly correlated, the condition number will be large, leading to numerically unstable, hence
unreliable, estimates of the weight vector w. As a consequence, some of the computed weights
can take very large values, including large negative values corresponding to short positions.

Contrary to what is often claimed in the literature, let us stress the fact that improving the
estimation of the returns and of the covariance matrix will not really solve the problem. Indeed,
in inverting a true (population) but large covariance matrix, we would have to face the same
kind of ill-conditioning as with empirical estimates, except for very special models such as
the identity matrix or a well-conditioned diagonal matrix. Such models, however, cannot be
expected to be very realistic.

A standard way to deal with inverse problems in the presence of ill-conditioning of the
matrix to be inverted is provided by so-called regularization methods. The idea is to include
additional constraints on the solution of the inverse problem (here, the weight vector) that will
prevent the error amplification due to ill-conditioning and hence allow one to obtain mean-
ingful, stable estimates of the weights. These constraints are expected, as far as possible, to
represent prior knowledge about the solution of the problem under consideration. Alterna-
tively, one can add a penalty to the objective function. It is this strategy that we will adopt here,
noticing that most often, equivalence results with a constrained formulation can be established
as long as we deal with convex optimization problems. For more details about regularization
techniques for inverse problems, we refer to the book by Bertero and Boccacci (1998).

A classical procedure for stabilizing least-squares problems is to use a quadratic penalty,
the simplest instance being the squared 𝓁2 norm of the weight vector: ‖w‖2

2 =
∑N

i=1 |wi|2. It
goes under the name of Tikhonov regularization in inverse problem theory and of ridge regres-
sion in statistics. Such a penalty can be added to regularize any of the optimization problems
considered in Section 2.1. For example, using a risk-free asset, let us consider problem (2.4)
and replace it by

w̃ridge = arg min
w

[w⊤Cw + 𝜆‖w‖2
2] (2.10)

s. t. w⊤

�̃� = 𝜌

where 𝜆 is a positive parameter, called the regularization parameter, allowing one to tune the
balance between the variance term and the penalty. Using a Lagrange parameter and fixing its
value to satisfy the linear constraint, we get the explicit solution

w̃ridge =
𝜌

�̃�
⊤(C + 𝜆I)−1�̃�

(C + 𝜆I)−1
�̃� (2.11)
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where I denotes the N × N identity matrix. Hence, the weights of the “ridge” optimal portfolio
are proportional to (C + 𝜆I)−1

�̃�, whatever the value of the excess target return 𝜌. The corre-
sponding variance is given by

𝜎
2 = w̃⊤

ridgeC w̃ridge =
𝜌

2

(�̃�⊤(C + 𝜆I)−1�̃�)2
�̃�
⊤(C + 𝜆I)−1C(C + 𝜆I)−1

�̃� (2.12)

which implies that, when 𝜆 is fixed, 𝜎 is again proportional to 𝜌 and that the efficient ridge
portfolios also lie on a straight line in the plane (𝜎, 𝜌), generalizing Tobin’s theorem to this
setting. Notice that its slope, the Sharpe ratio, does depend on the value of the regularization
parameter 𝜆.

Another standard regularization procedure, called truncated singular value decomposition,
(TSVD), consists of diagonalizing the covariance matrix and using for the inversion only the
subspace spanned by the eigenvectors corresponding to the largest eigenvalues (e.g., the K
largest). This is also referred to as reduced-rank or principal-components regression. and it
corresponds to replacing in the formulas (2.11, 2.12) the regularized inverse (C + 𝜆I)−1 by
VKD−1

K V⊤

K , where DK is the diagonal matrix containing the K largest eigenvalues d2
k of C and

VK is the N × K matrix containing the corresponding orthonormalized eigenvectors. Whereas
this method implements a sharp (binary) cutoff on the eigenvalue spectrum of the covari-
ance matrix, notice that ridge regression involves instead a smoother filtering of this spectrum
where the eigenvalues d2

k (positive since C is positive definite) are replaced by d2
k + 𝜆 or,

equivalently, in the inversion process, 1∕d2
k is replaced by 1∕(d2

k + 𝜆) = 𝜙
𝜆
(d2

k )∕d2
k , where

𝜙
𝜆
(d2

k ) = d2
k∕(d

2
k + 𝜆) is a filtering, attenuation, or “shrinkage” factor, comprised between

0 and 1, allowing one to control the instabilities generated by division by the smallest eigenval-
ues. More general types of filtering factors can be used to regularize the problem. We refer the
reader, for example, to the paper by De Mol et al. (2008) for a discussion of the link between
principal components and ridge regression in the context of forecasting of high-dimensional
time series, and to the paper by Carrasco and Noumon (2012) for a broader analysis of lin-
ear regularization methods, including an iterative method called Landweber’s iteration, in the
context of portfolio theory.

Regularized versions of the problems (2.1) and (2.9) can be defined and solved in a similar
way as for (2.4). Tikhonov’s regularization method has also been applied to the estimation of
the covariance matrix by Park and O’Leary (2010). Let us remark that there are many other
methods, proposed in the literature to stabilize the construction of Markowitz portfolios, which
can be viewed as a form of explicit or implicit regularization, including Bayesian techniques
as used for example in the so-called Black–Litterman model. However, they are usually more
complicated, and reviewing them would go beyond the scope of this chapter.

2.3 Sparse Portfolios

As discussed in Section 2.2, regularization methods such as rigde regression or TSVD allow
one to define and compute stable weights for Markowitz portfolios. The resulting vector of
regularized weights generically has all its entries different from zero, even if there may be a
lot of small values. This would oblige the investor to buy a certain amount of each security,
which is not necessarily a convenient strategy for small investors. Brodie et al. (2009) have
proposed to use instead a regularization based on a penalty that enforces sparsity of the weight
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vector, namely the presence of many zero entries in that vector, corresponding to assets that
will not be included in the portfolio. More precisely, they introduce in the optimization prob-
lem, formulated as (2.9), a penalty on the 𝓁1 norm of the vector of weights w, defined by‖w‖1 =

∑N
i=1 |𝑤i|. This problem then becomes

wsparse = arg min
w

[‖𝜌𝟏T − Rw‖2
2 + 𝜏‖w‖1] (2.13)

s. t. w⊤

�̂� = 𝜌

w⊤𝟏N = 1,

where the regularization parameter is denoted by 𝜏. Note that the factor 1∕T from (2.9) has
been absorbed in the parameter 𝜏. When removing the constraints, a problem of this kind is
referred to as lasso regression, after Tibshirani (1996). Lasso, an acronym for least absolute
shrinkage and selection operator, helps by reminding that it allows for variable (here, asset)
selection since it favors the recovery of sparse vectors w (i.e., vectors containing many zero
entries, the position of which, however, is not known in advance). This sparsifying effect is
also widely used nowadays in signal and image processing (see, e.g., the review paper by Chen
et al. (2001) and the references therein).

As argued by Brodie et al. (2009), besides its sparsity-enforcing properties, the 𝓁1-norm
penalty offers the advantage of being a good model for the transaction costs incurred to com-
pose the portfolio, costs that are not at all taken into account in the Markowitz original frame-
work. Indeed, these can be assumed to be roughly proportional, for a given asset, to the amount
of the transaction, whether buying or short-selling, and hence to the absolute value of the
portfolio weight 𝑤i. There may be an additional fixed fee, however, which would then be
proportional to the number K of assets to include in the portfolio (i.e., proportional to the car-
dinality of the portfolio, or the number of its nonzero entries, sometimes also called by abuse
of language the 𝓁0 “norm” (‖w‖0) of the weight vector w). Usually, however, such fees can
be neglected. Let us remark, moreover, that implementing a cardinality penalty or constraint
would render the portfolio optimization problem very cumbersome (i.e., nonconvex and of
combinatorial complexity). It has become a standard practice to use the 𝓁1 norm ‖w‖1 as a
“convex relaxation” for ‖w‖0. Under appropriate assumptions, there even exist some theoreti-
cal guarantees that both penalties will actually deliver the same answer (see, e.g., the book on
compressive sensing by Foucart and Rauhut (2013) and the references therein).

Let us remark that, in problem (2.13), it is actually the amount of “shorting” that is regulated;
indeed, because of the constraint that the weights should add to one, the objective function can
be rewritten as ‖𝜌𝟏T − Rw‖2

2 + 2𝜏
∑

i with 𝑤i<0

|𝑤i| + 𝜏, (2.14)

in which the last term, being constant, is of course irrelevant for determining the solution. In
this setting, we see that the 𝓁1-norm penalty is equivalent to a penalty on the negative weights
(i.e., on the short positions), only. In the limit of very large values of the regularization param-
eter 𝜏, we get, as a special case, a portfolio with only positive weights (i.e., no short positions).
Such no-short optimal portfolios had been considered previously in the financial literature by
Jagannathan and Ma (2003) and were known for their good performances, but, surprisingly,
their sparse character had gone unnoticed. As shown by Brodie et al. (2009), these no-short
portfolios, obtained for the largest values of 𝜏, are typically also the sparsest in the family
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defined by (2.13). When decreasing 𝜏 beyond some point, negative weights start to appear,
but the 𝓁1-norm penalty allows one to control their size and to ensure numerical stability of
the portfolio weights. The regularizing properties of the 𝓁1-norm penalty (or constraint) for
high-dimensional regression problems in the presence of collinearity is well known since the
paper by Tibshirani (1996), and the fact that the lasso strategy yields a proper regularization
method (as is the quadratic Tikhonov regularization method) even in an infinite-dimensional
framework has been established by Daubechies et al. (2004). Notice that these results were
derived in an unconstrained setting, but the presence of additional linear constraints can only
reinforce the regularization effect. A paper by Rosenbaum and Tsybakov (2010) investigates
the effect of errors on the matrix of the returns.

Compared to more classical linear regularization techniques (e.g., by means of a 𝓁2-norm
penalty), the lasso approach not only presents advantages as described above but also has some
drawbacks. A first problem is that the 𝓁1-norm penalty enforces a nonlinear shrinkage of the
portfolio weights that renders the determination of the efficient frontier much more difficult
than in the unpenalized case or in the case of ridge regression. For any given value of 𝜏, such
frontier ought to be computed point by point by solving (2.13) for different values of the target
return 𝜌. Another difficulty is that, though still convex, the optimization problem (2.13) is
more challenging and, in particular, does not admit a closed-form solution. There are several
possibilities to solve numerically the resulting quadratic program. Brodie et al. (2009) used the
homotopy method developed by Osborne et al. (2000a, 2000b), also known as the least-angle
regression (LARS) algorithm by Efron et al. (2004). This algorithm proceeds by decreasing the
value of 𝜏 progressively from very large values, exploiting the fact that the dependence of the
optimal weight on 𝜏 is piecewise linear. It is very fast if the number of active assets (nonzero
weights) is small. Because of the two additional constraints, a modification of this algorithm
was devised by Brodie et al. (2009) to make it suitable for solving the portfolio optimization
problem (2.13). For the technical details, we refer the interested reader to the supplementary
appendix of that paper.

2.4 Empirical Validation

The sparse portfolio methodology described in the previous Section 2.3 has been validated
by an empirical exercise, the results of which are succinctly described here. For a complete
description, we refer the reader to the original paper by Brodie et al. (2009).

Sparse portfolios were constructed using two benchmark datasets compiled by Fama and
French and available from the site http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html. They are ensembles of 48 and 100 portfolios and will be referred to as
FF48 and FF100, respectively. The out-of-sample performances of the portfolios constructed
by solving (2.13) were assessed and compared to the tough benchmark of the Talmudic or
equal-weight portfolios for the same period. Using annualized monthly returns from the FF48
and FF100 datasets, the following simulated investment exercise was performed over a period
of 30 years between 1976 and 2006. In June of each year, sparse optimal portfolios were con-
structed for a wide range of values of the regularization parameter 𝜏 in order to get different
levels of sparsity, namely portfolios containing different numbers K of active positions. To run
the regression, historical data from the preceding 5 years (60 months) were used. At the time of
each portfolio construction, the target return, 𝜌, was set to be the average return achieved by the
naive, equal-weight portfolio over the same historical period. Once constructed, the portfolios

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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were held until June of the next year, and their monthly out-of-sample returns were observed.
The same exercise was repeated each year until June 2005. All the observed monthly returns
of the portfolios form a time series from which one can compute the average monthly return 𝜌

(over the whole period or a subperiod), the corresponding standard deviation 𝜎, and the Sharpe
ratio S = 𝜌∕𝜎. We report some Sharpe ratios obtained when averaging over the whole period
1976–2006. For FF48, the best one was S = 41 and was obtained with the no-short portfolio,
comprising a number of active assets varying over the years, but typically ranging between 4
and 10. Then, when looking at the performances of sparse portfolios with a given number K
of active positions, their Sharpe ratios, lower than for the no-short portfolio, decreased with K,
clearly outperforming the equal-weight benchmark (for which S = 27) as long as K ≲ 25 but
falling below for K larger. For FF100, a different behavior was observed. The Sharpe ratios
were maximum and of the order of 40 for a number of active positions K around 30, thus
including short positions, whereas S = 30 for the no-short portfolio. The sparse portfolios
were outperforming the equal-weight benchmark with S = 28 as long as K ≲ 60.

In parallel and independently of the paper by Brodie et al. (2009), DeMiguel et al. (2009b)
performed an extensive comparison of the improvement in terms of the Sharpe ratio obtained
through various portfolio construction methods, and in particular by imposing constraints on
some specific norm of the weight vector, including 𝓁2 and 𝓁1 norms. Subsequent papers con-
firmed the good performances of the sparse portfolios, also on other and larger datasets and
in somewhat different frameworks, such as those by Fan et al. (2012), by Gandy and Veraart
(2013) and by Henriques and Ortega (2014).

2.5 Variations on the Theme

2.5.1 Portfolio Rebalancing

The empirical exercise described in Section 2.4 is not very realistic in representing the
behaviour of a single investor since a sparse portfolio would be constructed from scratch each
year. Its aim was rather to assess the validity of the investment strategy, as it would be carried
out by different investors using the same methodology in different years.

More realistically, an investor already holding a portfolio with weights w would like to adjust
it to increase its performance. This means that one should look for an adjustment Δw, so that
the new rebalanced portfolio weights are w + Δw. The incurred transaction costs concern only
the adjustment and hence can be modelled by the 𝓁1 norm of the vector Δw. This means that
we must now solve the following optimization problem:

Δwsparse = arg min
Δw

[‖𝜌𝟏T − R(w + Δw)‖2
2 + 𝜏‖Δw‖1]

s. t. Δw⊤

�̂� = 0

Δw⊤𝟏N = 0

ensuring sparsity in the number of weights to be adjusted and conservation of the total unit cap-
ital invested as well as of the target return. The methodology proposed by Brodie et al. (2009)
can be straightforwardly modified to solve this problem. An empirical exercise on sparse port-
folio rebalancing is described by Henriques and Ortega (2014).
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2.5.2 Portfolio Replication or Index Tracking

In some circumstances, an investor may want to construct a portfolio that replicates the per-
formances of a given portfolio or of a financial index such as the S&P 500, but is easier to
manage, for example because it contains less assets. In such a case, the investor will have at
his disposal a time series of index values or global portfolio historical returns, which can be
put in a T × 1 column vector y. The time series of historical returns of the assets that he can use
to replicate y will be put in a T × N matrix R, as before. The problem can then be formulated
as the minimization of the mean square tracking error augmented by a penalty on the 𝓁1 norm
of w, representing the transaction costs and enforcing sparsity:

wtrack = arg min
w

[‖y − Rw‖2
2 + 𝜏‖w‖1], (2.15)

s. t. w⊤𝟏N = 1.

This is a constrained lasso regression that can again be solved by means of the methodol-
ogy described in Section 2.3. A rebalancing version of this tracking problem could also be
implemented.

2.5.3 Other Penalties and Portfolio Norms

A straightforward modification of the previous scheme consists of introducing weights in the
𝓁1 norm used as penalty (i.e. replacing it with):

‖w‖1,s =
N∑

i=1

si|𝑤i| (2.16)

where the positive weights si can model either differences in transaction costs or some prefer-
ences of the investor. Another extension, considered for example by Daubechies et al. (2004)
for unconstrained lasso regression, is to use 𝓁p-norm penalties with 1 ≤ p ≤ 2, namely of
the type

‖w‖p
p =

N∑
i=1

|𝑤i|p (2.17)

yielding as special cases lasso for p = 1 or ridge regression for p = 2. The use of values of p
less than 1 in (2.17) would reinforce the sparsifying effect of the penalty but would render the
optimization problem nonconvex and therefore a lot more cumbersome.

A well-known drawback of variable selection methods relying on an 𝓁1-norm penalty or
constraint is the instability in selection in the presence of collinearity among the variables.
This means that, in the empirical exercise described here, when recomposing each year a new
portfolio, the selection will not be stable over time within a group of potentially correlated
assets. The same effect has been noted by De Mol et al. (2008) when forecasting macroe-
conomic variables based on a large ensemble of time series. When the goal is forecasting
and not variable selection, such effect is not harmful and would not, for example, affect the
out-of-sample returns of a portfolio. When stability in the selection matters, however, a pos-
sible remedy to this problem is the so-called elastic net strategy proposed by Zou and Hastie
(2005) which consists of adding to the 𝓁1-norm penalty a 𝓁2-norm penalty, the role of which
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is to enforce democracy in the selection within a group of correlated assets. Since all assets in
the group thus tend to be selected, it is clear that, though still sparse, the solution of the scheme
using both penalties will in general be less sparse than when using the 𝓁1-norm penalty alone.
An application of this strategy to portfolio theory is considered by Li (2014).

Notice that for applying the elastic net strategy as a safeguard against selection instabilities,
there is no need to know in advance which are the groups of correlated variables. When the
groups are known, one may want to select the complete group composed of variables or assets
belonging to some predefined category. A way to achieve this is to use the so-called mixed
𝓁1 − 𝓁2 norm, namely ‖w‖1,2 =

∑
j

(
∑

l

|𝑤j,l|2)1∕2 (2.18)

where the index j runs over the predefined groups and the index l runs inside each group. Such
strategy, called “group lasso” by Yuan and Lin (2006), will sparsify the groups but select all
variables within a selected group. For more details about these norms ensuring “structured
sparsity” and the related algorithmic aspects, see, for example, the review paper by Bach et al.
(2012).

2.6 Optimal Forecast Combination

The problem of sparse portfolio construction or replication bears strong similarity with the
problem of linearly combining individual forecasts in order to improve reliability and accuracy,
as noticed by Conflitti et al. (2015). These forecasts can be judgemental (i.e., provided by
experts asked in a survey to provide forecasts of some economic variables such as inflation)
or else be the output of different quantitative prediction models.

The idea is quite old, dating back to Bates and Granger (1969) and Granger and Ramanathan
(1984), and has been extensively discussed in the literature (see, e.g., the review by Clemen
1989 and Timmermann 2006).

The problem can be formulated as follows. We denote by yt+h the variable to be forecast at
time t, assuming that the desired forecast horizon is h. We have at hand N forecasters, each
delivering at time t a forecast ŷi,t+h, using the information about yt they have at time t. We form
with these individual forecasts ŷi,t+h, i = 1, · · · ,N, the N × 1-dimensional vector ‚yt+h. These
forecasts are then linearly combined using time-independent weights 𝑤i, i = 1, · · · ,N, which
are assumed to satisfy the contraints 𝑤i ≥ 0 and

∑N
i=1 𝑤i = 1, and which are put into the N × 1

vector w. The aim is to minimize the mean square forecast error E[(yt+h − w⊤ŷt+h)2] achieved
by the combination. In empirical applications, the expectation is replaced by the sample mean
over some historical period for which both the forecasts and the realization of the real variable
are available. Hence the optimal forecast combination problem can be formulated as

wopt = arg min
w

[
T−h∑
t=1

(yt+h − w⊤ŷt+h)2
]

(2.19)

s. t. w ≥ 𝟎

w⊤𝟏N = 1

assuming that the variable yt is observed for t = 1,… ,T . The resulting combined forecast for
the variable yt at time t = T + h is then given by w⊤

opt ŷT+h.
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With the vector of forecasts replacing the vector of returns, the problem is analogous to
the problem of portfolio tracking described in Section 2.5, but with an additional no-shorting
constraint. Besides, since by combining the two constraints we see that the 𝓁1 norm of the
weight vector is fixed to one, problem (2.19) is equivalent to

wopt = arg min
w

[
T−h∑
t=1

(yt+h − w⊤ŷt+h)2 + 𝜏‖w‖1

]
(2.20)

s. t. w ≥ 𝟎

w⊤𝟏N = 1

for any value of the regularization parameter 𝜏, which means that the weight vector will be
sparse. Hence we have to solve a constrained lasso regression, and the modified LARS algo-
rithm proposed by Brodie et al. (2009) can again be used to this purpose. Notice, however,
that the sparsity level cannot be tuned by adjusting the value of 𝜏. Possible remedies to this
drawback would be to give up the nonnegativity constraints on the weights or else to use exact
sparse simplex projections as in the paper by Kyrillidis et al. (2013).

An empirical exercise using survey data from the Survey of Professional Forecasters (SPF)
for the Euro area and concerning the forecast of inflation and of GDP (Gross Domestic Prod-
uct) growth is described in detail in the paper by Conflitti et al. (2015). The findings are that
the optimal combinations of more than 50 individual forecasts perform well compared to the
equal-weight combinations currently used by the European Central Bank. Nevertheless, the
corresponding gains are relatively modest, which shows that the 1∕N puzzle applies to this
situation as well. The paper by Conflitti et al (2015) also addresses the problem of optimally
combining density forecasts, in which case the least-squares objective function is replaced
by a Kullback–Leibler Information Criterion between densities or by a derived “log-score”
criterion.
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Mean-reverting assets are one of the holy grails of financial markets: if such assets existed,
they would provide trivially profitable investment strategies for any investor able to trade
them, thanks to the knowledge that such assets oscillate predictably around their long-term
mean. The modus operandi of cointegration-based trading strategies (Tsay, 2005, §8) is to
create first a portfolio of assets whose aggregate value mean-reverts, and then to exploit that
knowledge by selling short or buying that portfolio when its value deviates from its long-term
mean. Such portfolios are typically selected using tools from cointegration theory (Engle
and Granger, 1987; Johansen, 1991), whose aim is to detect combinations of assets that are
stationary and therefore mean-reverting. We argue in this chapter that focusing on stationarity
only may not suffice to ensure profitability of cointegration-based strategies. While it might
be possible to create synthetically, using a large array of financial assets, a portfolio whose
aggregate value is stationary and therefore mean-reverting, trading such a large portfolio
incurs in practice important trade or borrow costs. Looking for stationary portfolios formed
by many assets may also result in portfolios that have a very small volatility and that require
significant leverage to be profitable. We study in this chapter algorithmic approaches that
can mitigate these effects by searching for maximally mean-reverting portfolios that are
sufficiently sparse and/or volatile.

3.1 Introduction

Mean-reverting assets, namely assets whose price oscillates predictably around a long-term
mean, provide investors with an ideal investment opportunity. Because of their tendency
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to pull back to a given price level, a naive contrarian strategy of buying the asset when its
price lies below that mean, or selling short the asset when it lies above that mean, can be
profitable. Unsurprisingly, assets that exhibit significant mean reversion are very hard to find
in efficient markets. Whenever mean reversion is observed in a single asset, it is almost always
impossible to profit from it: the asset may typically have very low volatility, be illiquid, or be
hard to short-sell, or its mean reversion may occur at a time scale (months, years) for which
the borrow cost of holding or shorting the asset may well exceed any profit expected from
such a contrarian strategy.

3.1.1 Synthetic Mean-Reverting Baskets

Since mean-reverting assets rarely appear in liquid markets, investors have focused instead
on creating synthetic assets that can mimic the properties of a single mean-reverting asset,
and trading such synthetic assets as if they were a single asset. Such a synthetic asset is
typically designed by combining long and short positions in various liquid assets to form a
mean-reverting portfolio, whose aggregate value exhibits significant mean reversion.

Constructing such synthetic portfolios is, however, challenging. Whereas simple descrip-
tive statistics and unit-root test procedures can be used to test whether a single asset is
mean-reverting, building mean-reverting portfolios requires finding a proper vector of alge-
braic weights (long and short positions) that describes a portfolio that has a mean-reverting
aggregate value. In that sense, mean-reverting portfolios are made by the investor and cannot
be simply chosen among tradable assets. A mean-reverting portfolio is characterized both by
the pool of assets the investor has selected (starting with the dimension of the vector) and
by the fixed nominal quantities (or weights) of each of these assets in the portfolio, which
the investor also needs to set. When only two assets are considered, such baskets are usually
known as long-short trading pairs. We consider in this paper baskets that are constituted by
more than two assets.

3.1.2 Mean-Reverting Baskets with Sufficient Volatility and Sparsity

A mean-reverting portfolio must exhibit sufficient mean reversion to ensure that a contrarian
strategy is profitable. To meet this requirement, investors have relied on cointegration the-
ory (Engle and Granger, 1987; Johansen, 2005; Maddala and Kim, 1998) to estimate linear
combinations of assets that exhibit stationarity (and therefore mean reversion) using histori-
cal data. We argue in this chapter, as we did in earlier publications (Cuturi and d’Aspremont,
2013; d’Aspremont, 2011), that mean-reverting strategies cannot, however, only rely on this
approach to be profitable. Arbitrage opportunities can only exist if they are large enough
to be traded without using too much leverage or incurring too many transaction costs. For
mean-reverting baskets, this condition translates naturally into a first requirement that the
gap between the basket valuation and its long-term mean is large enough on average, namely
that the basket price has sufficient variance or volatility. A second desirable property is that
mean-reverting portfolios require trading as few assets as possible to minimize costs, namely
that the weights vector of that portfolio is sparse. We propose in this work methods that max-
imize a proxy for mean reversion, and that can take into account at the same time constraints
on variance and sparsity.
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We propose first in Section 3.2 three proxies for mean reversion. Section 3.3 defines the
basket optimization problems corresponding to these quantities. We show in Section 3.4 that
each of these problems translate naturally into semidefinite relaxations that produce either
exact or approximate solutions using sparse principal component analysis (PCA) techniques.
Finally, we present numerical evidence in Section 3.5 that taking into account sparsity and
volatility can significantly boost the performance of mean-reverting trading strategies in trad-
ing environments where trading costs are not negligible.

3.2 Proxies for Mean Reversion

Isolating stable linear combinations of variables of multivariate time series is a fundamental
problem in econometrics. A classical formulation of the problem reads as follows: given a
vector valued process x = (xt)t taking values in ℝn and indexed by time t ∈ ℕ, and making
no assumptions on the stationarity of each individual component of x, can we estimate one
or many directions y ∈ ℝn such that the univariate process (yTxt) is stationary? When such a
vector y exists, the process x is said to be cointegrated. The goal of cointegration techniques is
to detect and estimate such directions y. Taking for granted that such techniques can efficiently
isolate sparse mean-reverting baskets, their financial application can be either straightforward
using simple event triggers to buy, sell, or simply hold the basket (Tsay, 2005, §8.6), or more
elaborate optimal trading strategies if one assumes that the mean-reverting basket value is a
Ohrstein–Ullenbeck process, as discussed in Elie and Espinosa, (2011), Jurek and Yang (2007),
and Liu and Timmermann (2010).

3.2.1 Related Work and Problem Setting

Engle and Granger (1987) provided in their seminal work a first approach to compare two
nonstationary univariate time series (xt, yt), and test for the existence of a term 𝛼 such that
yt − 𝛼xt becomes stationary. Following this seminal work, several techniques have been pro-
posed to generalize that idea to multivariate time series. As detailed in the survey by Maddala
and Kim (1998, §5), cointegration techniques differ in the modeling assumptions they require
on the time series themselves. Some are designed to identify only one cointegrated relation-
ship, whereas others are designed to detect many or all of them. Among these references,
Johansen (1991) proposed a popular approach that builds upon a vector autoregression (VAR)
model, as surveyed in Johansen (2004, 2005). These approaches all discuss issues that are rel-
evant to econometrics, such as detrending and seasonal adjustments. Some of them focus more
specifically on testing procedures designed to check whether such cointegrated relationships
exist or not, rather than on the robustness of the estimation of that relationship itself. We fol-
low in this work a simpler approach proposed by d’Aspremont (2011), which is to trade off
interpretability, testing, and modeling assumptions for a simpler optimization framework that
can be tailored to include other aspects than only stationarity. d’Aspremont (2011) did so by
adding regularizers to the predictability criterion proposed by Box and Tiao (1977). We follow
in this chapter the approach we proposed in Cuturi and d’Aspremont (2013) to design mean
reversion proxies that do not rely on any modeling assumption.

Throughout this chapter, we write Sn for the n × n cone of positive definite matrices.
We consider in the following a multivariate stochastic process x = (xt)t∈ℕ taking values in ℝn.
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We write Ak = E[xtx
T
t+k], k ≥ 0 for the lag-k autocovariance matrix of xt if it is finite. Using a

sample path x of (xt), where x = (x1, · · · , xT ) and each xt ∈ ℝn, we write Ak for the empirical
counterpart of Ak computed from x,

Ak
def
=

1
T − k − 1

T−k∑
t=1

x̃tx̃
T
t+k, x̃t

def
= xt −

1
T

T∑
t=1

xt. (3.1)

Given y ∈ ℝn, we now define three measures that can all be interpreted as proxies for the mean
reversion of yTxt. Predictability –defined for stationary processes by Box and Tiao (1977)
and generalized for nonstationary processes by Bewley et al. (1994) – measures how close to
noise the series is. The portmanteau statistic of Ljung and Box (1978) is used to test whether a
process is white noise. Finally, the crossing statistic (Ylvisaker, 1965) measures the probability
that a process crosses its mean per unit of time. In all three cases, low values for these criteria
imply a fast mean reversion.

3.2.2 Predictability

We briefly recall the canonical decomposition derived in Box and Tiao (1977). Suppose that
xt follows the recursion:

xt = x̂t−1 + 𝜀t, (3.2)

where x̂t−1 is a predictor of xt built upon past values of the process recorded up to t − 1, and
𝜀t is a vector of independent and identically distributed (i.i.d.) Gaussian noise with zero mean
and covariance Σ ∈ Sn independent of all variables (xr)r<t. The canonical analysis in Box and
Tiao (1977) starts as follows.

3.2.2.1 Univariate case

Suppose n = 1 and thus Σ ∈ ℝ+; Equation (3.2 ) leads thus to

E[x2
t ] = E[x̂2

t−1] + E[𝜀2
t ], thus 1 =

�̂�
2

𝜎
2
+

Σ
𝜎

2
,

by introducing the variances 𝜎
2 and �̂�

2 of xt and x̂t, respectively. Box and Tiao measure the
predictability of xt by the ratio

𝜆

def
=

�̂�
2

𝜎
2

.

The intuition behind this variance ratio is simple: when it is small, the variance of the noise
dominates that of x̂t−1 and xt is dominated by the noise term; when it is large, x̂t−1 dominates
the noise and xt can be accurately predicted on average.

3.2.2.2 Multivariate case

Suppose n > 1, and consider now the univariate process (yTxt)t with weights y ∈ ℝn. Using
(3.2 ), we know that yTxt = yT x̂t−1 + yT

𝜀t, and we can measure its predicability as

𝜆(y)
def
=

yT ̂A0y

yTA0y
, (3.3)
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where ̂A0 and A0 are the covariance matrices of xt and x̂t−1, respectively. Minimizing pre-
dictability 𝜆(y) is then equivalent to finding the minimum generalized eigenvalue 𝜆 solving

det(𝜆A0 − ̂A0) = 0. (3.4)

Assuming that A0 is positive definite, the basket with minimum predictability will be given
by y = A−1∕2

0
y0, where y0 is the eigenvector corresponding to the smallest eigenvalue of the

matrix A−1∕2
0

̂A0A
−1∕2
0

.

3.2.2.3 Estimation of 𝝀(y)

All of the quantities used to define 𝜆 above need to be estimated from sample paths. A0 can
be estimated by A0 following Equation (3.1). All other quantities depend on the predictor x̂t−1.
Box and Tiao assume that xt follows a vector autoregressive model of order p –VAR(p), in
short –and therefore x̂t−1 takes the form,

x̂t−1 =
p∑

k=1

Hkxt−k,

where the p matrices (Hk) contain each n × n autoregressive coefficient. Estimating Hk from
the sample path x, Box and Tiao solve for the optimal basket by inserting these estimates in
the generalized eigenvalue problem displayed in Equation (3.4). If one assumes that p = 1
(the case p > 1 can be trivially reformulated as a VAR(1) model with adequate reparameteri-
zation), then

̂A0 = H1A0HT
1 and A1 = A0H1,

and thus the Yule–Walker estimator (Lütkepohl, 2005, §3.3) of H1 would be H1 = A−1
0 A1.

Minimizing predictability boils down to solving in that case

min
y

�̂�(y), �̂�(y)
def
=

yT (H1A0HT
1 )y

yTA0y
=

yT (A1A−1
0 AT

1 )y
yTA0y

,

which is equivalent to computing the smallest eigenvector of the matrix A−1∕2
0

A1A−1
0 AT

1 A−1∕2
0

if the covariance matrix A0 is invertible.
The machinery of Box and Tiao to quantify mean reversion requires defining a model to

form x̂t−1, the conditional expectation of xt given previous observations. We consider now two
criteria that do without such modeling assumptions.

3.2.3 Portmanteau Criterion

Recall that the portmanteau statistic of order p (Ljung and Box 1978) of a centered univariate
stationary process x (with n = 1) is given by

porp(x) =
1
p

p∑
i=1

(
E[xtxt+i]

E[x2
t ]

)2
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where E[xtxt+i]∕E[x2
t ] is the ith-order autocorrelation of xt. The portmanteau statistic of a white

noise process is by definition 0 for any p. Given a multivariate (n > 1) process x, we write

𝜙p( y) = porp( yTx) =
1
p

p∑
i=1

(
yTAiy

yTA0y

)2

,

for a coefficient vector y ∈ ℝn. By construction, 𝜙p(y) = 𝜙p(ty) for any t ≠ 0, and in what
follows, we will impose ‖y‖2 = 1. The quantities 𝜙p(y) are computed using the following
estimates (Hamilton, 1994, p. 110):

�̂�p(y) =
1
p

p∑
i=1

(
yTAiy

yTA0y

)2

. (3.5)

3.2.4 Crossing Statistics

Kedem and Yakowitz (1994, §4.1) define the zero crossing rate of a univariate (n = 1) process
x (its expected number of crosses around 0 per unit of time) as

𝛾(x) = E

[∑T
t=2 𝟏{xtxt−1≤0}

T − 1

]
. (3.6)

A result known as the cosine formula states that if xt is an autoregressive process of order 1
(AR(1)), namely if |a| < 1, 𝜀t is i.i.d. standard Gaussian noise and xt = axt−1 + 𝜀t, then
(Kedem and Yakowitz, 1994, §4.2.2):

𝛾(x) =
arccos(a)

𝜋

.

Hence, for AR(1) processes, minimizing the first-order autocorrelation a also directly maxi-
mizes the crossing rate of the process x. For n > 1, since the first-order autocorrelation of yTxt
is equal to yTA1y, we propose to minimize yTA1y and ensure that all other absolute autocor-
relations |yTAky|, k > 1 are small.

3.3 Optimal Baskets

Given a centered multivariate process x, we form its covariance matrix A0 and its p auto-
covariances (A1, · · · ,Ap). Because yTAy = yT (A + AT )y∕2, we symmetrize all autocovariance
matrices Ai. We investigate in this section the problem of estimating baskets that have maximal
mean reversion (as measured by the proxies proposed in Section 3.2), while being at the same
time sufficiently volatile and supported by as few assets as possible. The latter will be achieved
by selecting portfolios y that have a small “0-norm,” namely that the number of nonzero com-
ponents in y, ‖y‖0

def
= #{1 ≤ i ≤ d|yi ≠ 0},

is small. The former will be achieved by selecting portfolios whose aggregated value exhibits
a variance over time that exceeds a given threshold 𝜈 > 0. Note that for the variance of (yTxt)
to exceed a level 𝜈, the largest eigenvalue of A0 must necessarily be larger than 𝜈, which we
always assume in what follows. Combining these two constraints, we propose three different
mathematical programs that reflect these tradeoffs.
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3.3.1 Minimizing Predictability

Minimizing Box–Tiao’s predictability �̂� defined in Section 3.2.2, while ensuring that both the
variance of the resulting process exceeds 𝜈 and the vector of loadings is sparse with a 0-norm
equal to k, means solving the following program:

minimize yTMy

subject to yTA0y ≥ 𝜈,‖y‖2 = 1,‖y‖0 = k,

(P1)

in the variable y ∈ ℝn with M
def
= A1A−1

0 AT
1 , where M,A0 ∈ Sn. Without the normalization con-

straint ‖y‖2 = 1 and the sparsity constraint ‖y‖0 = k, problem (P1) is equivalent to a general-
ized eigenvalue problem in the pair (M,A0). That problem quickly becomes unstable when A0
is ill-conditioned or M is singular. Adding the normalization constraint ‖y‖2 = 1 solves these
numerical problems.

3.3.2 Minimizing the Portmanteau Statistic

Using a similar formulation, we can also minimize the order p portmanteau statistic defined in
Section 3.2.3 while ensuring a minimal variance level 𝜈 by solving:

minimize
∑p

i=1
(yTAiy)2

subject to yTA0y ≥ 𝜈,‖y‖2 = 1,‖y‖0 = k,

(P2)

in the variable y ∈ ℝn, for some parameter 𝜈 > 0. Problem (P2) has a natural interpretation: the
objective function directly minimizes the portmanteau statistic, while the constraints normalize
the norm of the basket weights to one, impose a variance larger than 𝜈, and impose a sparsity
constraint on y.

3.3.3 Minimizing the Crossing Statistic

Following the results in Section 3.2.4, maximizing the crossing rate while keeping the rest of
the autocorrelogram low,

minimize yTA1y + 𝜇

∑p
k=2

(yTAky)2

subject to yTA0y ≥ 𝜈,‖y‖2 = 1,‖y‖0 = k,

(P3)

in the variable y ∈ ℝn, for some parameters 𝜇, 𝜈 > 0. This will produce processes that are close
to being AR(1) while having a high crossing rate.
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3.4 Semidefinite Relaxations and Sparse Components

Problems (P1), (P2), and (P3) are not convex and can be in practice extremely difficult to solve,
since they involve a sparse selection of variables. We detail in this section convex relaxations
to these problems that can be used to derive relevant suboptimal solutions.

3.4.1 A Semidefinite Programming Approach to Basket Estimation

We propose to relax problems (P1), (P2), and (P3) into semidefinite programs (SDPs) (Vanden-
berghe and Boyd, 1996). We show that these SDPs can handle naturally sparsity and volatility
constraints while still aiming at mean reversion. In some restricted cases, one can show that
these relaxations are tight, in the sense that they solve exactly the programs described above.
In such cases, the true solution y⋆ of some of the programs above can be recovered using their
corresponding SDP solution Y⋆.

However, in most of the cases we will be interested in, such a correspondence is not guar-
anteed, and these SDP relaxations can only serve as a guide to propose solutions to these hard
nonconvex problems when considered with respect to vector y. To do so, the optimal solution
Y⋆ needs to be deflated from a large rank d × d matrix to a rank one matrix yyT , where y can be
considered a good candidate for basket weights. A typical approach to deflate a positive definite
matrix into a vector is to consider its eigenvector with the leading eigenvalue. Having sparsity
constraints in mind, we propose to apply a heuristic grounded on sparse PCA (d’Aspremont
et al., 2007; Zou et al., 2006). Instead of considering the lead eigenvector, we recover the lead-
ing sparse eigenvector of Y⋆ (with a 0-norm constrained to be equal to k). Several efficient
algorithmic approaches have been proposed to solve approximately that problem; we use the
SpaSM (sparse statistiscal modeling) toolbox (Sjöstrand et al., 2012) in our experiments.

3.4.2 Predictability

We can form a convex relaxation of the predictability optimization problem (P1) over the
variable y ∈ ℝn,

minimize yTMy

subject to yTA0y ≥ 𝜈‖y‖2 = 1,‖y‖0 = k,

by using the lifting argument of Lovász and Schrijver (1991), (i.e., writing Y = yyT ) to solve
now the problem using a semidefinite variable Y , and by introducing a sparsity-inducing reg-
ularizer on Y that considers the L1 norm of Y ,

‖Y‖1
def
=
∑

ij

|Yij|,
so that Problem (P1) becomes (here 𝜌 > 0),

minimize Tr(MY) + 𝜌‖Y‖1

subject to Tr(A0Y) ≥ 𝜈

Tr(Y) = 1,Rank(Y) = 1,Y ⪰ 0.
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We relax this last problem further by dropping the rank constraint, to get

minimize Tr(MY) + 𝜌‖Y‖1

subject to Tr(A0Y) ≥ 𝜈

Tr(Y) = 1,Y ⪰ 0

(SDP1)

which is a convex semidefinite program in Y ∈ Sn.

3.4.3 Portmanteau

Using the same lifting argument and writing Y = yyT , we can relax problem (P2) by solving

minimize
∑p

i=1
Tr(AiY)2 + 𝜌‖Y‖1

subject to Tr(BY) ≥ 𝜈

Tr(Y) = 1,Y ⪰ 0,

(SDP2)

a semidefinite program in Y ∈ Sn.

3.4.4 Crossing Stats

As above, we can write a semidefinite relaxation for problem (P3):

minimize Tr(A1Y) + 𝜇

∑p
i=2

Tr(AiY)2 + 𝜌‖Y‖1

subject to Tr(BY) ≥ 𝜈

Tr(Y) = 1,Y ⪰ 0.

(SDP3)

3.4.4.1 Tightness of the SDP Relaxation in the Absence of Sparsity Constraints

Note that for the crossing stats criterion (with p = 1 and no quadratic term in Y), the orig-
inal problem P3 and its relaxation SDP3 are equivalent, taking for granted that no sparsity
constraint is considered in the original problems and 𝜇 is set to 0 in the relaxations. These
relaxations boil down to an SDP that only has a linear objective, a linear constraint, and a con-
straint on the trace of Y . In that case, Brickman (1961) showed that the range of two quadratic
forms over the unit sphere is a convex set when the ambient dimension n ≥ 3, which means in
particular that for any two square matrices A,B of dimension n,

{(yTAy, yTBy) ∶ y ∈ ℝn
, ‖y‖2 = 1}

= {(Tr(AY),Tr(BY)) ∶ Y ∈ Sn,TrY = 1,Y ⪰ 0}.

We refer the reader to Barvinok 2002 (§II.13) for a more complete discussion of this result.
As remarked in Cuturi and d’Aspremont (2013), the same equivalence holds for P1 and SDP1.
This means that, in the case where 𝜌, 𝜇 = 0 and the 0-norm of y is not constrained, for any
solution Y⋆ of the relaxation (SDP1) there exists a vector y⋆ that satisfies ‖y‖2

2 = Tr(Y⋆) = 1,
y⋆TA0y⋆ = Tr(BY⋆), and y⋆TMy⋆ = Tr(MY⋆), which means that y⋆ is an optimal solution
of the original problem (P1). Boyd and Vandenberghe (2004, App. B) show how to explicitly
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Figure 3.1 Option implied volatility for Apple between January 4, 2004, and December 30, 2010.

extract such a solution y⋆ from a matrix Y⋆ solving (SDP1). This result is, however, mostly
anecdotical in the context of this chapter, in which we look for sparse and volatile baskets:
using these two regularizers breaks the tightness result between the original problems in ℝd

and their SDP counterparts.

3.5 Numerical Experiments

In this section, we evaluate the ability of our techniques to extract mean-reverting baskets with
sufficient variance and small 0-norm from a universe of tradable assets. We measure perfor-
mance by applying to these baskets a trading strategy designed specifically for mean-reverting
processes. We show that, under realistic trading costs assumptions, selecting sparse and volatile
mean-reverting baskets translates into lower incurred costs and thus improves the performance
of trading strategies.

3.5.1 Historical Data

We consider daily time series of option implied volatilities for 210 stocks from January 4,
2004, to December 30, 2010. A key advantage of using option implied volatility data is
that these numbers vary in a somewhat limited range. Volatility also tends to exhibit regime
switching, and hence can be considered piecewise stationary, which helps in extracting
structural relationships. We plot a sample time series from this dataset in Figure 3.1 that
corresponds to the implicit volatility of Apple’s stock. In what follows, we mean by asset the
implied volatility of any of these stocks whose value can be efficiently replicated using option
portfolios.
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3.5.2 Mean-reverting Basket Estimators

We compare the three basket selection techniques detailed here, predictability, portmanteau,
and crossing statistic, implemented with varying targets for both sparsity and volatility, with
two cointegration estimators that build upon PCA (Maddala and Kim, 1998, §5.5.4).. By the
label PCA, we mean in what follows the eigenvector with the smallest eigenvalue of the
covariance matrix A0 of the process (Stock and Watson, 1988). By sPCA, we mean the sparse
eigenvector of A0 with 0-norm k that has the smallest eigenvalue, which can be simply esti-
mated by computing the leading sparse eigenvector of 𝜆I − A0 where 𝜆 is bigger than the
leading eigenvalue of A0. This sparse principal component of the covariance matrix A0 should
not be confused with our utilization of sparse PCA in Section 3.4.1 as a way to recover a vector
solution from the solution of a positive semidefinite problem. Note also that techniques based
on principal components do not take explicitly variance levels into account when estimating
the weights of a co-integrated relationship.

3.5.3 Jurek and Yang (2007) Trading Strategy

While option implied volatility is not directly tradable, it can be synthesized using baskets
of call options, and we assimilate it to a tradable asset with (significant) transaction costs in
what follows. For baskets of volatilities isolated by the techniques listed above, we apply the
Jurek and Yang (2007) strategy for log utilities to the basket process recording out of sample
performance. Jurek and Yang proposed to trade a stationary autoregressive process (xt)t of
order 1 and mean 𝜇 governed by the equation xt+1 = 𝜌xt + 𝜎𝜀t, where |𝜌| < 1, by taking a
position Nt in the asset xt, which is proportional to

Nt =
𝜌(𝜇 − xt)

𝜎
2

Wt (3.7)

In effect, the strategy advocates taking a long (resp. short) position in the asset whenever it
is below (resp. above) its long-term mean, and adjust the position size to account for the
volatility of xt and its mean reversion speed 𝜌. Given basket weights y, we apply standard
AR estimation procedures on the in-sample portion of yTx to recover estimates for �̂� and
�̂� and plug them directly in Equation (3.7). This approach is illustrated for two baskets in
Figure 3.2.

3.5.4 Transaction Costs

We assume that fixed transaction costs are negligible, but that transaction costs per contract unit
are incurred at each trading date. We vary the size of these costs across experiments to show
the robustness of the approaches tested here to trading costs fluctuations. We let the transaction
cost per contract unit vary between 0.03 and 0.17 cents by increments of 0.02 cents. Since the
average value of a contract over our dataset is about 40 cents, this is akin to considering trading
costs ranging from about 7 to about 40 base points (BPs), that is, 0.07 to 0.4%.
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Figure 3.2 Three sample trading experiments, using the PCA, sparse PCA, and crossing statistics estimators. (a) Pool of 9 volatility time series selected
using our fast PCA selection procedure. (b) Basket weights estimated with in-sample data using the eigenvector of the covariance matrix with the smallest
eigenvalue, the smallest eigenvector with a sparsity constraint of k = ⌊0.5 × 9⌋ = 4, and the crossing statistics estimator with a volatility threshold of
𝜈 = 0.2, (i.e., a constraint on the basket’s variance to be larger than 0.2× the median variance of all 8 assets). (c) Using these 3 procedures, the time series
of the resulting basket price in the in-sample part (c) and out-of-sample parts (d) are displayed. (e) Using the Jurek and Yang (2007) trading strategy results
in varying positions (expressed as units of baskets) during the out-sample testing phase. (f) Transaction costs that result from trading the assets to achieve
such positions accumulate over time. (g) Taking both trading gains and transaction costs into account, the net wealth of the investor for each strategy can
be computed (the Sharpe ratio over the test period is displayed in the legend). Note how both sparsity and volatility constraints translate into portfolios
composed of fewer assets, but with a higher variance.
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Figure 3.2 (continued)
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3.5.5 Experimental Setup

We consider 20 sliding windows of one year (255 trading days) taken in the history, and con-
sider each of these windows independently. Each window is split between 85% of days to
estimate and 15% of days to test-trade our models, resulting in 38 test-trading days. We do not
recompute the weights of the baskets during the test phase. The 210 stock volatilities (assets)
we consider are grouped into 13 subgroups, depending on the economic sector of their stock.
This results in 13 sector pools whose size varies between 3 assets and 43 assets. We look for
mean-reverting baskets in each of these 13 sector pools.

Because all combinations of stocks in each of the 13 sector pools may not necessar-
ily be mean-reverting, we select smaller candidate pools of n assets through a greedy
backward-forward minimization scheme, where 8 ≤ n ≤ 12. To do so, we start with an
exhaustive search of all pools of size 3 within the sector pool, and proceed by adding or
removing an asset using the PCA estimator (the smallest eigenvalue of the covariance matrix
of a set of assets). We use the PCA estimator in that backward-forward search because it
is the fastest to compute. We score each pool using that PCA statistic, the smaller meaning
the better. We generate up to 200 candidate pools per each of the 13 sector pools. Out of all
these candidate pools, we keep the best 50 in each window, and then use our cointegration
estimation approaches separately on these candidates. One such pool was, for instance,
composed of the stocks {BBY,COST,DIS,GCI,MCD,VOD,VZ,WAG,T} observed during
the year 2006. Figure 3.2 provides a closeup on that universe of stocks, and shows the results
of three trading experiments using PCA, sparse PCA, or the Crossing Stats estimator to build
trading strategies.

3.5.6 Results

3.5.6.1 Robustness of Sharpe Ratios to Costs

In Figure 3.3, we plot the average of the Sharpe ratio over the 922 baskets estimated in our
experimental set versus transaction costs. We consider different PCA settings as well as our
three estimators using, in all three cases, the variance bound 𝜈 to be 0.3 times the median of all
variances of assets available in a given asset pool, and the 0-norm to be equal to 0.3 times the
size of the universe (itself between 8 and 12). We observe that Sharpe ratios decrease the fastest
for the naive PCA-based method, this decrease being somewhat mitigated when adding a con-
straint on the 0-norm of the basket weights obtained with sparse PCA. Our methods require,
in addition to sparsity, enough volatily to secure sufficient gains. These empirical observations
agree with the intuition of this chapter: simple cointegration techniques can produce synthetic
baskets with high mean reversion, large support, and low variance. Trading a portfolio with
low variance that is supported by multiple assets translates in practice into high trading costs,
which can damage the overall performance of the strategy. Both sparse PCA and our tech-
niques manage instead to achieve a tradeoff between desirable mean reversion properties and,
at the same time, control for sufficient variance and small basket size to allow for lower overall
transaction costs.
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Figure 3.3 Average Sharpe ratio for the Jurek and Yang (2007) trading strategy captured over about
922 trading episodes, using different basket estimation approaches. These 922 trading episodes were
obtained by considering 7 disjoint time-windows in our market sample, each of a length of about one
year. Each time-window was divided into 85% in-sample data to estimate baskets, and 15% outsample
to test strategies. On each time-window, the set of 210 tradable assets during that period was clustered
using sectorial information, and each cluster screened (in the in-sample part of the time-window) to
look for the most promising baskets of size between 8 and 12 in terms of mean reversion, by choosing
greedily subsets of stocks that exhibited the smallest minimal eigenvalues in their covariance matrices.
For each trading episode, the same universe of stocks was fed to different mean-reversion algorithms.
Because volatility time-series are bounded and quite stationary, we consider the PCA approach, which
uses the eigenvector with the smallest eigenvalue of the covariance matrix of the time-series to define a
cointegrated relationship. Besides standard PCA, we have also consider sparse PCA eigenvectors with
minimal eigenvalue, with the size k of the support of the eigenvector (the size of the resulting basket)
constrained to be 30%, 50% or 70% of the total number of considered assets. We consider also the
portmanteau, predictability and crossing stats estimation techniques with variance thresholds of 𝜈 = 0.2
and a support whose size k (the number of assets effectively traded) is targeted to be about 30% of the
size of the considered universe (itself between 8 and 12). As can be seen in the figure, the sharpe ratios
of all trading approaches decrease with an increase in transaction costs. One expects sparse baskets
to perform better under the assumption that costs are high, and this is indeed observed here. Because
the relationship between sharpe ratios and transaction costs can be efficiently summarized as being a
linear one, we propose in the plots displayed in Figure 3.4 a way to summarize the lines above with
two numbers each: their intercept (Sharpe level in the quasi-absence of costs) and slope (degradation of
Sharpe as costs increase). This visualization is useful to observe how sparsity (basket size) and volatility
thresholds influence the robustness to costs of the strategies we propose. This visualization allows us to
observe how performance is influenced by these parameter settings.
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3.5.6.2 Tradeoffs between Mean Reversion, Sparsity, and Volatility

In the plots of Figure 3.4, this analysis is further detailed by considering various settings for 𝜈
(volatility threshold) and k. To improve the legibility of these results, we summarize, following
the observation in Figure 3.3 that the relationship between Sharpes and transactions costs
seems almost linear, each of these curves by two numbers: an intercept level (Sharpe ratio
when costs are low) and a slope (degradation of Sharpe as costs increase). Using these two
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Figure 3.4 Relationships between Sharpe in a low cost setting (intercept) in the x-axis and robustness
of Sharpe to costs (slope of Sharpe/costs curve) of a different estimators implemented with varying
volatility levels 𝜈 and sparsity levels k parameterized as a multiple of the universe size. Each colored
square in the figures above corresponds to the performance of a given estimator (Portmanteau in subfigure
(a), Predictability in subfigure (b) and Crossing Statistics in subfigure (c)) using different parameters
for 𝜈 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} and u ∈ {0.3, 0.5, 0.7}. The parameters used for each experiment are
displayed using an arrow whose vertical length is proportional to 𝜈 and horizontal length is proportional
to u.
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Figure 3.4 (continued)

numbers, we locate all considered strategies in the intercept–slope plane. We first show the
spectral techniques, PCA and sPCA, with different levels of sparsity, meaning that k is set to⌊u × d⌋, where u ∈ {0.3, 0.5, 0.7} and d is the size of the original basket. Each of the three
estimators we propose is studied in a separate plot. For each, we present various results char-
acterized by two numbers: a volatility threshold 𝜈 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} and a sparsity
level u ∈ {0.3, 0.5, 0.7}. To avoid cumbersome labels, we attach an arrow to each point: the
arrow’s length in the vertical direction is equal to u and characterizes the size of the basket,
and the horizontal length is equal to 𝜈 and characterizes the volatility level. As can be seen in
these three plots, an interesting interplay between these two factors allows for a continuum of
strategies that trade mean reversion (and thus Sharpe levels) for robustness to cost level.

3.6 Conclusion

We have described three different criteria to quantify the amount of mean reversion in a time
series. For each of these criteria, we have detailed a tractable algorithm to isolate a vector
of weights that has optimal mean reversion, while constraining both the variance (or signal
strength) of the resulting univariate series to be above a certain level and its 0-norm to be at
a certain level. We show that these bounds on variance and support size, together with our
new criteria for mean reversion, can significantly improve the performance of mean reversion
statistical arbitrage strategies and provide useful controls to adjust mean-reverting strategies
to varying trading conditions, notably liquidity risk and cost environment.

References
Barvinok, A. (2002). A course in convexity. Providence, RI: American Mathematical Society.
Bewley, R., Orden, D., Yang, M. and Fisher, L. (1994). Comparison of Box-Tiao and Johansen canonical estimators

of cointegrating vectors in VEC (1). Models. Journal of Econometrics, 64, 3–27.



�

� �

�

40 Financial Signal Processing and Machine Learning

Box, G. and Tiao, G. (1977). A canonical analysis of multiple time series. Biometrika, 64(2), 355–365.
Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Brickman, L. (1961). On the field of values of a matrix. Proceedings of the American Mathematical Society, 12, 61–66.
Cuturi, M. and d’Aspremont, A. (2013). Mean reversion with a variance threshold. In Proceedings of the International

Conference in Machine Learning 2013, June, Atlanta, GA.
d’Aspremont, A. (2011). Identifying small mean reverting portfolios. Quantitative Finance, 11(3), 351–364.
d’Aspremont, A., El Ghaoui, L., Jordan, M.I. and Lanckriet, G.R. (2007). A direct formulation for sparse PCA using

semidefinite programming. SIAM Review, 49(3), 434–448.
Elie, R., and Espinosa, G.E. (2011). Optimal stopping of a mean reverting diffusion: minimizing the relative distance

to the maximum. hal-00573429.
Engle, R.F. and Granger, C.W.J. (1987). Co-integration and error correction: Representation, estimation, and testing.

Econometrica, 55(2), 251–276.
Hamilton, J. (1994). Time series analysis, Vol. 2. Cambridge: Cambridge University Press.
Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive

models. Econometrica, 59(6), 1551–1580.
Johansen, S. (2004). Cointegration: overview and development. In Handbook of financial time series (ed. Andersen,

T.G., Davis, R.A., Kreiß, J.P. and Mikosch, T.V.). Berlin: Springer.
Johansen, S. (2005). Cointegration: a survey. Palgrave Handbook of Econometrics. London: Palgrave.
Jurek, J.W. and Yang, H. (2007). Dynamic portfolio selection in arbitrage. EFA 2006 Meetings Paper. SSRN eLibrary,

http://dx.doi.org/10.2139/ssrn.882536
Kedem, B. and Yakowitz, S. (1994). Time series analysis by higher order crossings. Piscataway, NJ: IEEE Press.
Liu, J. and Timmermann, A. (2010). Optimal arbitrage strategies. Technical report. San Diego: University of Cali-

fornia, San Diego.
Ljung, G. and Box, G. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303.
Lovász, L. and Schrijver, A. (1991). Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on

Optimization, 1(2), 166–190.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.
Maddala, G. and Kim, I. (1998). Unit roots, cointegration, and structural change. Cambridge: Cambridge University

Press.
Sjöstrand, K., Clemmensen, L.H., Larsen, R. and Ersbøll, B. (2012). SpaSM: A MATLAB toolbox for sparse statistical

modeling. Journal of Statistical Software, accepted.
Stock, J. and Watson, M. (1988). Testing for common trends. Journal of the American Statistical Association, 83,

1097–1107.
Tsay, R.S. (2005). Analysis of financial time series. Weinheim: Wiley-Interscience.
Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1), 49–95.
Ylvisaker, N.D. (1965). The expected number of zeros of a stationary Gaussian process. The Annals of Mathematical

Statistics, 36(3), 1043–1046.
Zou, H., Hastie, T. and Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and

Graphical Statistics, 15(2), 265–286.

http://www.dx.doi.org/10.2139/ssrn.882536


�

� �

�

4
Temporal Causal Modeling

Prabhanjan Kambadur1, Aurélie C. Lozano2 and Ronny Luss2

1Bloomberg LP, USA
2IBM T.J. Watson Research Center, USA

4.1 Introduction

Discovering causal relationships in multivariate time series data has many important appli-
cations in finance. Consider portfolio management, where one of the key tasks is to quantify
the risk associated with different portfolios of assets. Traditionally, correlations amongst assets
have been used to manage risk in portfolios. Knowledge of causal structures amongst assets can
help improve portfolio management as knowing causality – rather than just correlation – can
allow portfolio managers to mitigate risks directly. For example, suppose that an index fund
“A” is found to be one of the causal drivers of another index fund “B.” Then, the variance of
B can be reduced by offsetting the variation due to the causal effects of A. In contrast simply
knowing that “A” is correlated with “B” provides no guidance on how to act on index “B,”
as this does not mean that the two indexes are connected by a cause-and-effect relationship;
hedging solely based on correlation does not protect against the possibility that correlation is
driven by an unknown effect. Moreover, causal structures may be more stable across market
regimes as they have more chance to capture effective economic relationships.

In order to mitigate risks effectively, we need several enhancements to mere causality
detection. First, we need to be able to reason about the “strength” of the causal relationship
between two assets using statistical measures such as p-values. Attaching well-founded
strengths to causal relationships allows us to focus on the important relationships and serves
as a guard against false discovery of causal relationships. Second, we need to be able to infer
causality in the presence of heteroscedasticity. Typically, causal relationships are modeled
by regressing to the conditional mean; this does not always give us a complete understanding
of the conditional distributions of the responses based on their causalities. Finally, as the
causality amongst assets might be seasonal, we need to be able to automatically identify
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regime changes. If we can successfully discover a temporally accurate causal structure
that encodes causal strengths, we would be able to enhance the accuracy of tasks such as
explaining the effect of political or financial events on different markets and understanding
the microstructure of a financial network.

In this chapter, we discuss temporal causal modeling (or TCM) (Lozano et al., 2009a,b), an
approach that generalizes the notion of Granger causality to multivariate time series by linking
the causality inference process to the estimation of sparse vector autoregressive (VAR) models
(Section 4.2). Granger causality (Granger, 1980) is an operational definition of causality well
known in econometrics, where a source time series is said to “cause” a target time series if
it contains additional information for predicting the future values of the target series, beyond
the information contained in the past values of the target time series. In essence, TCM com-
bines Granger causality with sparse multivariate regression algorithms, and performs graphical
modeling over the lagged temporal variables. We define and use a notion of causal strength
modeling (or CSM) for TCM to investigate these potential implications (Section 4.3). We
describe how TCM can be extended to the quantile loss function (or Q-TCM) to better model
heteroscedactic data (Section 4.4). Finally, we extend TCM to identify regime changes by com-
bining it with a Markov switching modeling framework (Chib, 1998); specifically, we describe
a Bayesian Markov switching model for estimating sparse dynamic Bayesian networks (or
MS-SDBN) (Section 4.5).

As a concrete case study that highlights the benefits of TCM, consider a financial network
of various exchange-traded funds (ETFs) that represent indices tracking a mix of stocks traded
on the largest exchanges of various countries. For example, the ticker symbol EWJ represents
an ETF that tracks the MSCI Japan Index. We consider a dataset from a family of ETFs called
iShares that contains ETF time series of 15 countries as well as an index tracking oil and
gas prices and an index tracking the spot price of gold; iShares are managed by Blackrock
and the data are publicly available from finance.yahoo.com. The causal CSM graphs
formed during four different 750-day periods that cover 2005–2008 are shown in Figure 4.1;
for interpretability, we use a lag spanning the previous 5 days for vector autoregression. Each
feature is a monthly return computed over the previous 22 business days and the lag of 5
days is the monthly return ending on each of those 5 days. Each graph moves the window
of data over 50 business days in order to view how time affects the causal networks. Each
arc appearing in the CSM causal graphs represents a causal relationship with causal strength
greater than a predefined threshold in [0, 1]. Causal strength, as we define it, measures the like-
lihood that the causal relationship between two nodes is statistically significant. For example,
in Figure 4.1a, the causal strength of the relationship directed from South Korea to the United
States measures the likelihood that including the South Korea data increases the performance
of a United States model. This likelihood is further defined in Section 4.3 (note that this def-
inition of causal strength differs from heuristic notions of causal strength, such as measuring
coefficient magnitudes in a linear model). In particular, we are interested in the dependencies
of the United States – represented by an ETF that tracks the S&P 500 – during the financial
crisis of 2007 and 2008. The panels in Figure 4.1 show an interesting dependence of US-listed
equities on Asian-listed equities, which focuses mostly on Japan. To analyze this further, we
perform TCM to discover the United States’ dependencies over several time periods begin-
ning in 2005 and running through 2015. Table 4.1, which shows the results of our analysis,
depicts the causal strength values for the three strongest relationships for each time period.
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Figure 4.1 Causal CSM graphs of ETFs from iShares formed during four different 750-day periods in
2007–2008. Each graph moves the window of data over 50 business days in order to discover the effect
of time on the causal networks. The lag used for VAR spans the 5 days (i.e., uses five features) preceding
the target day. Each feature is a monthly return computed over the previous 22 business days.

From Table 4.1, we see that causal relationships change very quickly with time (periods are
shifted by 50 business days, resulting in rapid changes to the causal networks). For example,
we see that Asian dependencies almost always play a major role for the United States, but the
specific Asian countries of interest change. In the early ongoing period of the financial crisis,
Japan, South Korea, and China all played major roles, but after the brunt of the crisis occurred
(2009 and onwards), South Korea and Germany had the biggest influences. In 2012, Japan
and China superseded South Korea as the major dependencies, and 2 years later, Hong Kong
played the bigger role. We also note from this analysis that, in 2012, Switzerland overtook
Germany as the main European factor for US-listed equities.
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4.2 TCM

In this section, we exposit the basic methodology of TCM. In Section 4.1, we introduce
Granger causality, which forms the underpinning for TCM. In Section 4.2, we expand the
notion of Granger causality to grouping, which allows us to determine causality of an entire
time series on other time series. Finally, in Section 4.3, we present experiments on synthetic
datasets with known ground truths for the basic TCM methods.

4.2.1 Granger Causality and Temporal Causal Modeling

Granger causality (Granger, 1980), which was introduced by the Nobel prize–winning
economist Clive Granger, has proven useful as an operational notion of causality in
time-series analysis in the area of econometrics. Granger causality is based on the simple
intuition that a cause should precede its effect; in particular, if a “source” time-series causally
affects another “target” time-series, then the past values of the source should be helpful in
predicting the future values of the target, beyond what can be predicted based only on the
target’s own past values. That is, a time-series x “Granger causes” another time series y, if the
accuracy of regressing for y in terms of past values of y and x is (statistically) significantly
better than that of regressing just with past values of y. Let {xt}T

t=1 denote the time-series
variables for x and {yt}T

t=1 the same for y; then, to determine Granger causality, we first
perform the following two regressions:

yt ≈
L∑

l=1

al⋅yt−l +
L∑

l=1

bl⋅xt−l (4.1)

yt ≈
L∑

l=1

al⋅yt−l (4.2)

where L is the maximum “lag” allowed in past observations. To determine whether or not (4.1)
is more accurate than (4.2) with a statistically significantly advantage, we perform an F-test
or another suitable statistical test. We shall use the term feature to mean a time-series (e.g., x)
and use temporal variables or lagged variables to refer to the individual values (e.g., xt).

The notion of Granger causality, as introduced above, was defined for a pair of time-series;
however, we typically want to determine causal relationships amongst several time-series.
Naturally, we use graphical modeling over time-series data to determine conditional depen-
dencies between the temporal variables, and obtain insight and constraints on the causal rela-
tionship between the time-series. One technique for graphical modeling is to use regression
algorithms with variable selection to determine the causal relationships of each variable; for
example, lasso (Tibshirani, 1996), which minimizes the sum of squared errors loss plus a
sparsity-inducing 𝓁1 norm penalty on the regression coefficients. That is, we can consider the
variable selection process in regression for yt in terms of yt−1, x1

t−1, x2
t−1 and so on, as an applica-

tion of the Granger test on time-series y against the time-series x1, x2, …, xp.1 When a pairwise
Granger test is extended to facilitate multiple causal time-series, we can say that x1 Granger
causes y, if x1

t−l is selected for any time lag l = {1, 2,… ,L} in the above variable selection. If

1 Superscripts represent features; for example, xp is the pth feature or the pth time-series.
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such regression-based variable selection coincides with the conditional dependence between
the variables, the above operational definition can be interpreted as the key building block of
the temporal causal model.

4.2.2 Grouped Temporal Causal Modeling Method

In TCM, we are typically interested in knowing whether an entire time-series xt−1, xt−2,…, xt−L
provides information to help predict another time-series yt; it is of little or no consequence if
an individual lag l, xt−l provides additional information for predicting yt. From a modeling per-
spective, the relevant variable selection question is not whether an individual lagged variable is
to be included in regression, but whether the lagged variables for a given time-series as a group
are to be included. This would allow us to make statements of the form “x Granger causes y.”
Therefore, a more faithful implementation of TCM methods should take into account the group
structure imposed by the time-series into the modeling approach and fitting criteria that are
used in the variable selection process. This is the motivation for us to turn to the recently devel-
oped methodology, group lasso (Yuan and Lin, 2006), which performs variable selection with
respect to model-fitting criteria that penalize intragroup and intergroup variable inclusion dif-
ferently. This argument leads to the generic procedure of the grouped graphical Granger mod-
eling method that is shown in Figure 4.2. We now describe both regularized and greedy regres-
sion methods that can serve as REG in Figure 4.2. Under regularized methods, we describe
with both nongrouped and grouped variable selection techniques: lasso, adaptive lasso, and
group lasso. Of these three, we prefer group lasso for the subprocedure REG in Figure 4.2 as
it performs regression with group variable selection. Lasso and adaptive lasso are not grouped
methods and will be used for comparison purposes in the simulations of Section 4.2.3.

1. Input

• Time-series data {xt}t=1,..,T where each xt is a p-dimensional vector.
• A regression method with group variable selection, REG.

2. Initialization
Initialize the adjacency matrix for the p features, that is, G = ⟨V ,E⟩, where V is the set of p

features (e.g., by all 0’s).
3. Selection

For each feature y ∈ V , run REG on regressing for yt in terms of the past lagged variables,
xt−L,… ,xt−1, for all the features x ∈ V (including y). That is, regress (yT , yT−1,… , y1+L)T in terms
of ⎛⎜⎜⎜⎜⎜⎝

x1
T−1 … x1

T−L … xp
T−1

… xp
T−L

x1
T−2 … x1

T−1−L … xp
T−2 … xp

T−1−L

⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮

x1
L … x1

1 … xp
L … xp

1

⎞⎟⎟⎟⎟⎟⎠
where V = {xj

, j = 1,… , p}. For each feature xj ∈ V , place an edge xj → y into E, if and only if
xj was selected as a group by the grouped variable selection method REG.

Figure 4.2 Generic TCM algorithm.
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Regularized Least-Squares Methods
Let y = (y1,… , yn)T ∈ ℝn be a response vector and let X = [x1

, x2
,… , xp] ∈ ℝn×p be the

predictor matrix, where xj = (xj
1
,… , xj

n)T , j = 1,… p, are the covariates. Typically the pairs
(Xi, yi) are assumed to be independently identically distributed (i.i.d.) but most results can
be generalized to stationary processes given a reasonable decay rate of dependencies such as
conditions on the mixing rates. As we are interested in selecting the most important predic-
tors in a high-dimensional setting, the ordinary-least-squares (OLS) estimate is not satisfac-
tory; instead, procedures performing coefficient shrinkage and variable selection are desirable.
A popular method for variable selection is the lasso (Tibshirani, 1996), which is defined as:

̂𝜽lasso(𝜆) = arg min
𝜽

(‖y − X𝜽‖2 + 𝜆‖𝜽‖1),

where 𝜆 is a penalty parameter. Here the 𝓁1 norm penalty ‖𝜽‖1 automatically introduces vari-
able selection, that is ̂𝜽j(𝜆) = 0 for some j′s, leading to improved accuracy and interpretability.
The lasso procedure – with lag L = 1 – has been used for causality analysis in Fujita et al.
(2007). Unfortunately, lasso tends to overselect the variables and to address this issue, Zou
(2006) proposed the adaptive lasso, a two-stage procedure solving:

̂𝜽adapt(𝜆) = arg min
𝜽

(‖y − X𝜽‖2 + 𝜆

p∑
j=1

|𝜃j||�̂�init,j|
)

,

where �̂�init is an initial root-n consistent estimator such as that obtained by OLS or Ridge
Regression. Notice that if �̂�init,j = 0 then ∀𝜆 > 0, ̂𝜽adapt(𝜆) = 0. In addition if the penalization
parameter 𝜆 is chosen appropriately, adaptive lasso is consistent for variable selection, and
enjoys the “Oracle Property”, which (broadly) signifies that the procedure performs as well
as if the true subset of relevant variables were known. Our final regression method – group
lasso (Yuan and Lin, 2006; Zhao et al., 2006) – shines in situations where natural groupings
exist between variables, and variables belonging to the same group should be either selected
or eliminated as a whole. Given J groups of variables that partition the set of predictors, the
group lasso estimate of Yuan and Lin (2006) solves:

̂𝜽group(𝜆) = arg min
𝜽

‖y − X𝜽‖2 + 𝜆

J∑
j=1

‖𝜽Gj
‖2,

where 𝜽Gj
= {𝜽k; k ∈ Gj} and G j denotes the set of group indices. Notice that the penalty term

𝜆

∑J
j=1 ‖𝜽Gj

‖2 in the above equation corresponds to the sparsity-inducing 𝓁1 norm applied to
the J groups of variables, where the 𝓁2 norm is used as the intragroup penalty. In TCM, groups
are of equal length as they correspond to the maximum lag that we wish to consider, so the
objective does not need to account for unequal group size. By electing to use the 𝓁2 norm as the
intragroup penalty, group lasso encourages the coefficients for variables within a given group
to be similar in amplitude (as opposed to using the 𝓁1 norm, for example). Note that Granger
causality always includes previous values of y in the model for y; we omit this in the above
equation as we assume that the effect of the previous values of y has “removed” from y. This
is done as there is no means to force y into the model for y using group-lasso.
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Greedy Methods
In lieu of regularized least-squares methods, we could use greedy methods such as the orthog-
onal patching pursuit algorithm (Lozano et al., 2009d) (or OMP) and its variant for group
variable selection, group OMP (Lozano et al., 2009d). These procedures are iterative and pick
the best feature (or feature group) in each iteration, with respect to reduction of the residual
error, and then re-estimate the coefficients, 𝜽(k), via OLS on the restricted sets of selected fea-
tures (or feature groups). The group OMP procedure is described in Figure 4.3; the classical
OMP version can be recovered from Figure 4.3 by considering groups of individual features.
Note that – to strictly satisfy the definition of Granger causality – we can forcibly select y as
one of the selected predictors of y by initializing 𝜽(0) = XGy

in Figure 4.3.

4.2.3 Synthetic Experiments

We conducted systematic experimentation using synthetic data in order to test the performance
of group lasso and group OMP against that of the nongroup variants (lasso and adaptive lasso)
for TCM. We present our findings in this section.

Data Synthesis
As models for data generation, we employed the vector autoregression (VAR) models (Enders,
2003). Specifically, let xt denote the vector of all feature values at time t, then a VAR model
is defined as xt = Θt−1⋅xt−1 +…+Θt−T ⋅xt−T , where 𝚯s are coefficient matrices over the fea-
tures. We randomly generate an adjacency matrix over the features that determines the structure

1. Input

• The data matrix X = [f1,… , fp] ∈ ℝn×p,
• Group structure G1,… ,GJ ,
• The response y ∈ ℝn.
• Precision 𝜖 > 0 for the stopping criterion.

2. Output

• The selected groups G(k).
• The regression coefficients 𝜽(k).

3. Initialization

• G(0) = ∅, 𝜽(0) = 0.

4. Selection
For k = 1, 2,…

1. Let r(k−1) = X𝜽(k−1) − y.
2. Let j(k) = arg min

j
‖r(k−1) − XGj

X+
Gj

r(k−1)‖2. That is, j(k) is the group that minimizes the

residual for the target r(k−1). X+
Gj

= (X⊤

Gj
XGj

)−1XGj
.

3. If (‖r(k−1) − XGj
X+

Gj
r(k−1)‖2 ≤ 𝜖) break,

4. Set G(k) = G(k−1) ∪ Gj(k) ; 𝜽
(k) = X+

G(k)y.

End

Figure 4.3 Method group OMP.
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of the true VAR model, and then randomly assign the coefficients – 𝚯 – to each edge in the
graph. We use the model thus generated on a random initial vector x1 to generate time-series
data X = {xt}t=1,…,T of a specified length T . Following Arnold et al. (2007), during data gen-
eration, we made use of the following parameters: (1) affinity, which is the probability that
each edge is included in the graph, was set at 0.2; and (2) sample size per feature per lag,
which is the total data size per feature per maximum lag allowed, was set at 10. We sampled
the coefficients of the VAR model according to a normal distribution with mean 0 and standard
deviation 0.25. The noise standard deviation was set at 0.1, and so was the standard deviation
of the initial distribution.

Evaluation
For all the variable selection subprocedures, the penalty parameter 𝜆 is tuned so as to minimize
the BIC criterion (as recommended in Zou et al. (2006)), with degrees of freedom estimated
as in Zou et al. (2006) for lasso and adaptive lasso, and as in Yuan and Lin (2006) for group
lasso. Following Arnold et al. (2007), we evaluate the performance of all methods using the
F1 measure, viewing the causal modeling problem as that of predicting the inclusion of the
edges in the true graph, or the corresponding adjacency matrix. Briefly, given precision P and
recall R, the F1-measure is defined as F1 = 2PR

(P+R) , and hence strikes a balance in the trade-off
between the two measures.

Results
Table 4.2 summarizes the results of our experiments, which reports the average F1 values over
18 runs along with the standard error. These results clearly indicate that there is a significant
gap in performance between group lasso and the nongroup counterparts (lasso and adaptive
lasso). Figure 4.4 shows some typical output graphs along with the true graph. In this particular
instance, it is rather striking how the nongroup methods tend to overselect, whereas the grouped
method manages to obtain a perfect graph.

Our experiments demonstrate the advantage of using the proposed TCM method (using
group lasso and group OMP) over the standard (nongrouped) methods (based on lasso or adap-
tive lasso). Note that the nongrouped method based on lasso can be considered as an extension
of the algorithm proposed in Fujita et al. (2007) to lags greater than one time unit.

Remark 4.1 In the remainder of this chapter, we present various extensions of TCM, where
we alternatively employ group OMP, group lasso, and Bayesian variants to serve as REG in
Figure 4.2. We do so in order to expose the reader to the variety of group variable selection
approaches. In general, the TCM extensions presented here can be extended to use any of the
group OMP, group lasso, or Bayesian variants interchangeably.

Table 4.2 The accuracy (F1) and standard error in identifying the correct model of the two
nongrouped TCM methods, compared to those of the grouped TCM methods on synthetic data

Method lasso adalasso grplasso grpOMP

Accuracy (F1) 0.62 ± 0.09 0.65 ± 0.09 0.92 ± 0.19 0.92 ± 0.08
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(a) True graph (b) Lasso (c) Adaptive lasso (d) Group lasso (e) Group OMP

Figure 4.4 Output causal structures on one synthetic dataset by the various methods. In this example,
the group-based method exactly reconstructs the correct graph, while the nongroup ones fail badly.

4.3 Causal Strength Modeling

In Section 4.2, we discussed modeling of causal relationships using Granger causality. In par-
ticular, in Figure 4.3, we discussed group OMP, a greedy mechanism to compute the causal
graph. As causal relationships are defined by multiple lags of each time series, the next logical
statistic to consider is the strength of a group, where a group of variables is defined by the dif-
ferent lags of the same time series. In the iShares example discussed in Section 4.1, the causal
graphs made use of a notion called causal strength modeling (or CSM). To recap, the causal
graphs in Figure 4.1 maintain only those relationships where the causal strength is greater
than a given threshold. In this section, we define the notion of causal strength for each causal
relationship discovered when applying the group OMP method to TCM.2 The focus here is to
determine the likelihood that a selected group of features is a true predictor for the model.

Method
Group OMP (see Figure 4.3) is a greedy feature selection procedure that produces, at each iter-
ation, a new linear model that is fit using least-squares regression. Causal strength is a concept
that tells information about the significance of a causal relationship. There are various ways
to describe this relationship; a simple heuristic, for example, would be to measure coefficient
magnitudes. In this framework, we measure causal strength as the likelihood that the coeffi-
cients for a group G in the linear model are nonzero. This likelihood is estimated by testing the
probability of the null hypothesis H0 ∶ 𝜽G = 0 for all coefficient indices in group G. In gen-
eral, the distribution of the coefficients of a group of variables can be shown to be Gaussian
(assuming Gaussian noise), and the null hypothesis can be tested using an F-test. However,
as group OMP selects group G in a greedy fashion, the distribution of the coefficients of a
group of variables is only conditionally Gaussian and the F-test offers conservative estimates
for p-values, which leads to incorrectly declaring certain relationships as causal. To estimate
the p-values accurately, we use Monte Carlo simulation. Loftus and Taylor (2014) analyze
the conditional Gaussian distribution of the coefficients that group OMP (which they refer to
as forward stepwise model selection) discovers at each iteration and discuss how to compute
what they term the truncated 𝜒 test statistic. This statistic has a uniform distribution and leads
to unbiased p-values for the corresponding hypothesis tests.3

2 Although causal strengths can be estimated for group lasso, we have not tried it in practice and therefore omit
discussion.
3 While this procedure is significantly less computationally intensive, the Monte Carlo simulations are sufficient for
our purposes. However, we have not had the opportunity to try out this method.
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The proxy for testing whether the coefficients of a group added at iteration k are zero tests
the statistic max

j∈J̄sel

‖X∗
Gj

r̂(k−1)‖2 as a proxy for ‖𝜽(k)
Gj
‖2, where J̄sel is the set of remaining groups

that can be selected and includes the group selected at iteration k, and r̂(k−1) is the normalized
residual X𝜽(k−1) − y. We want to test whether the normalized residual r̂(k−1) is noise or con-
tains information. At each iteration, the probability that the null hypothesis holds is estimated
by Monte Carlo simulation. First, random vectors are generated in order to create an empir-
ical distribution of max

j∈J̄sel

‖X∗
Gj

z‖2 where z has a standard normal distribution. This represents

the distribution of the above statistic that would be observed if the normalized residual were
Gaussian. Then, the probability that the null hypothesis should be rejected can be computed
from the quantiles of this empirical distribution. Refer to Loftus and Taylor (2014) for further
discussion of this Monte Carlo estimation as well as their novel test statistic for testing the null
hypothesis. Note that our values of causal strength are defined as 1 − p where p is the p-value
corresponding to the null hypothesis.

4.4 Quantile TCM (Q-TCM)

The causal models discussed in Section 4.2 consider the causal relationship of the conditional
mean of the responses given predictors; yet in many relevant applications, interest lies in the
causal relationships for certain quantiles. These relationships may differ from those for the
conditional mean or might be more or less pronounced. Therefore, it is critical to develop a
complete understanding of the conditional distributions of the responses based on their pre-
dictors. In addition, real-world time-series often deviate from the Gaussian distribution, while
quantile estimation obtained via the distribution function of the conditional mean regression
models is very sensitive to these distributional assumptions. However, quantile regression does
not rely on a specific distributional assumption on the data and provides more robust quantile
estimation, and is thus more applicable to real-world data. In view of the above desiderata, we
present in this section a quantile TCM approach, which extends the traditional VAR model
to estimate quantiles, and promotes sparsity by penalizing the VAR coefficients (Aravkin
et al., 2014). In particular, we extend the group OMP algorithm in Figure 4.3 by replacing the
ordinary-least-squares solution for ̂𝜽

(k)
at each iteration k with the solution to quantile regres-

sion. Section 4.4.1 details the new algorithm for quantile TCM, and Section 4.4.2 uses quantile
TCM to perform feature selection on the example from Section 4.1 with additional outliers.

4.4.1 Modifying Group OMP for Quantile Loss

Overview
Figure 4.3 details the group OMP algorithm for 𝓁2 norm loss function. We modify two steps
of this algorithm in order to apply it to Q-TCM. First, we generalize the group selection step
(4.4.1) for the quantile loss function. Second, the refitting step (4.4.3) is modified to learn
the new linear model using a quantile loss function. We begin with a discussion of quantile
regression. Let y and X denote the response vector and data matrix, respectively. Quantile
regression assumes that the 𝜏-th quantile is given by

F−1
y|X(𝜏) = X ̄𝜽

𝜏
(4.3)
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where ̄𝜽
𝜏
∈ ℝp is the coefficient vector that we want to estimate in p dimensions and Fy|X is the

cumulative distribution function for a multivariate random variable with the same distribution
as y|X. Let r = y − X𝜽 be the vector of residuals. Quantile regression is traditionally solved
using the following “check-function”:

c
𝜏
(r) =

∑
i

(−𝜏 + 1{ri ≥ 0})ri,

where the operations are taken element-wise; note that setting 𝜏 = 0.5 yields the least absolute
deviation (LAD) loss. Denote the quantile regression solution for a linear model as:

̂𝜽QR,X(G, y) = arg min
𝜽

c
𝜏
(y − XG𝜽).

Quantile regression can be solved efficiently using various methods; for example, the regres-
sion problem can be rewritten as a linear program. In the case of Q-TCM, quantile regression
is used to fit a linear model with the currently selected groups at each iteration. Thus, each iter-
ation solves a larger regression problem, but in practice the total number of groups selected
in most applications tends to be small. Our implementation uses an interior point (IP) method
described in Aravkin et al. (2013) to solve the quantile regression problem. In short, the IP
method rewrites the check function in a variational form,

c
𝜏
(r) = max

u
{⟨u, r⟩ ∶ u ∈ [−𝜏, 1 − 𝜏]n},

and applies the Newton method to solve the optimality conditions of the resulting min-max
optimization problem. Structure of the problem is crucial to an efficient implementation. We
now discuss how to modify Algorithm 4.3 for Q-TCM. The group selection step is generalized
to select the group that maximizes the projection onto the direction of steepest descent (i.e.,
gradient) with respect to the loss function. In the case of Q-TCM, the selection step becomes:

j(k) = arg max
j

‖X∗
Gj
((1 − 𝜏)(r(k−1))+ + 𝜏(r(k−1))−)‖2,

where r(k−1) = y − X𝜽(k−1) and (1 − 𝜏)(r(k−1))+ + 𝜏(r(k−1))− is a subgradient of the quantile
loss evaluated at r(k−1). The second change replaces the refitting step with 𝜽(k) = ̂𝜽QR,X(G, y).
The fully modified version of group OMP tailored for Q-TCM is given in Figure 4.5.

4.4.2 Experiments

We analyze the iShares dataset used in Section 4.1, after introducing a few outliers, and illus-
trate how using a quantile loss function can discover the same causal relationships in the
presence of outliers as an l2 loss function can discover without the outliers (but cannot dis-
cover with them). United States The focus is on learning a model for the United States for the
period April 18, 2005, through April 10, 2008 (the second row of Table 4.1). In Section 4.1,
we showed that a TCM model for the United States is (statistically) significantly improved by
including time-series data pertaining to Japan, South Korea, and China. This is a period where
Asian-traded companies have a major influence on US-traded companies. We introduce three
outliers into the original data. Figure 4.6 displays the original time-series, during the period of
interest, with the noisy dates represented by red circles. Note that each data point is a monthly
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1. Input

• Data X = [f1,… , fp] ∈ ℝn×p

• Group structure G1,… ,GJ , such that X∗
Gj

XGj
= Idj

.

• The response y ∈ ℝn

• Precision 𝜖 > 0 for the stopping criterion.

2. Output

• The selected groups G(k).
• The regression coefficients 𝜽(k).

3. Initialization
G(0) = ∅, 𝜽(0) = 0.

4. Selection
For k = 1, 2,…

• Let j(k) = arg max
j

‖X∗
Gj
((1 − 𝜏)(r(k−1))+ + 𝜏(r(k−1))−)‖2, where r(k−1) = y − X𝜽(k−1).

• If (‖X∗
G

j(k)
(X𝜽(k−1) − y)‖2 ≤ 𝜖) break,

• Set G(k) = G(k−1) ∪ Gj(k) . Let 𝜽(k) = ̂𝜽QR,X(G, y).
End

Figure 4.5 Method Quantile group OMP.

0 100 200 300 400 500 600 700 800
–0.15

–0.1

–0.05

0

0.05

0.1

Figure 4.6 Log-returns for ticker IVV (which tracks S&P 500) from April 18, 2005, through April 10,
2008. Outliers introduced on 10/26/2005, 12/14/2007, and 01/16/2008 are represented by red circles.

return and that consecutive points are consecutive days, so that the period for computing the
return overlaps on all but one day (and hence there are long periods of correlation as opposed to
daily returns that would appear as white noise). While these outliers have been introduced, they
are on the same magnitude with the largest magnitude dates of the original data. Outlier detec-
tion algorithms could likely detect at least two of the outliers simply because they occur sud-
denly. The outlier on 01/16/2008 occurs during an event with an already highly negative return.

A look at the data shows possible outliers and that Q-TCM should be considered. The grid of
quantiles considered here is a default grid that can be used when no other information is known.
Given extra information about the noise, a particular set of quantiles could be considered. We
consider the following quantiles: 𝜏 ∈ {0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90}. Models here are
limited to selecting a total of five regressor time-series, including the target IVV (which tracks
S&P 500), so only four additional time-series can be included. The selected regressors for each
of the models after running Q-TCM and TCM are given in Table 4.3.



�

� �

�

Temporal Causal Modeling 55

Table 4.3 Time-series selected for IVV, which tracks S&P 500, using Q-TCM and TCM on noisy
data. The correct features are South Korea, Japan, and China, which are discovered by Q-TCM

Q-TCM Q-TCM Q-TCM Q-TCM Q-TCM Q-TCM Q-TCM TCM
𝜏 = 0.10 𝜏 = 0.25 𝜏 = 0.35 𝜏 = 0.50 𝜏 = 0.65 𝜏 = 0.75 𝜏 = 0.90

Gld & Slvr Gld & Slvr Gld & Slvr Gld & Slvr Gld & Slvr Gld & Slvr Gld & Slvr Gld & Slvr
Japan Oil & Gas Japan South Korea South Korea South Korea South Korea Taiwan
Brazil France Mexico Japan Japan Japan Japan Canada
South Korea Mexico South Korea China China China China China

Table 4.4 MSE on test period for Q-TCM and TCM models for IVV on noisy data

Q-TCM Q-TCM Q-TCM Q-TCM Q-TCM Q-TCM Q-TCM TCM
𝜏 = 0.10 𝜏 = 0.25 𝜏 = 0.35 𝜏 = 0.50 𝜏 = 0.65 𝜏 = 0.75 𝜏 = 0.90

0.1229e-3 0.1246e-3 0.1226e-3 0.1228e-3 0.1226e-3 0.1225e-3 0.1226e-3 0.3956e-3

In order to select the best model, we use data for the three months following the model gener-
ation period to learn which model fits best. The test period is 04/11/2008 through 07/11/2008.
The Q-TCM and TCM models learned above are used to predict returns in the test period, and
the mean squared error (MSE) is computed for the predictions on the test data for each model.
The losses for the seven Q-TCM models and TCM are given in Table 4.4. TCM clearly has the
worst loss on the test data and is thus not a good model to use. The best model, by a very small
margin, is the Q-TCM model for the 0.90 quantile, so that model is selected. As we have seen
here, this model selects Japan, South Korea, and China as significant factors, which is consis-
tent with the uncorrupted data (see Section 4.1). Note that models with each of the quantiles
𝜏 ∈ {0.50, 0.65, 0.75, 0.90} select the same model as TCM selected on the uncorrupted data
(which, while not a ground truth, is an estimate). In this example, the squared loss grossly
penalized the outliers, but various versions of an absolute value penalty (i.e., quantile penalty
at different quantiles) would have sufficed. With additional noise, Q-TCM was required here
to learn a sufficient model, whereas if TCM was used here with the default squared loss, then
Taiwan, Canada, and China would have been selected instead of the model selected on the
uncorrupted data.

4.5 TCM with Regime Change Identification

In Section 4.2, we described TCM to accurately model causal relationships. However, we did
not attempt to capture time-dependent variations in causal relationships; in Section 4.1, we
saw an example of iShares, where the causal relationships vary with time. In this section, we
extend TCM to incorporate such temporal information and identity regime changes (Jiang
et al., 2012). Formally, the main goal of this section is to describe a computationally effi-
cient methodology to model the time-varying dependency structure underlying multivariate
time-series data, with a particular focus on regime change identification. For this purpose, we
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marry the TCM framework with the Markov switching modeling framework; specifically, we
describe a Bayesian Markov switching model for estimating TCMs (MS-TCM).

The key idea is to introduce a latent state variable that captures the regime from which obser-
vations at each time period are drawn (Chib, 1998). We allow this latent variable to return to
any previous state, which closely resembles reality and allows one to overcome sample scarcity
by borrowing strength across samples that are not adjacent in time. Each regime is governed
by a TCM model. For group variable selection with TCM, we extend a hierarchical Bayesian
framework that adds flexibility to the original group lasso (Yuan and Lin, 2006; Zhao et al.,
2006). Briefly, a hierarchical prior is specified for the regression coefficients, which results
in maximum a posteriori (MAP) estimation with sparsity-inducing regularization; this can be
seen as an iteratively reweighted adaptive group lasso estimator. Here, adaptivity refers to the
fact that the penalty amount may differ across groups of regression coefficients, similar to
adaptive lasso (Zou, 2006). Moreover, the penalty parameter 𝜆 is iteratively updated, therefore
alleviating the need for parameter tuning (as opposed to non-Bayesian approaches). An addi-
tional benefit of such a quasi-Bayesian approach is its computational efficiency, which allows
for graceful accommodation of high-dimensional datasets.

By combining a Markov-switching framework with Bayesian group lasso, MS-TCM pro-
vides a natural and integrated modeling framework to both capture regime changes and esti-
mate TCM. The rest of this section is laid out as follows. In Section 4.5.1, we present the
combined Markov switching model for TCM. In Section 4.5.2, we present algorithms to effi-
ciently solve the combined model. In Sections 4.5.3 and 4.5.4, we present experiments that
demonstrate the power of TCM with regime change identification.

4.5.1 Model

Markov-switching Model for TCM
To extend the TCM model in Section 4.2, we propose a Markov switching VAR model as
follows: introduce a latent state variable St, St ∈ {1, 2,… ,K} for each time point, where K is
the total number of possible states and St stands for the state at time t. Given the state variables
{St}, we can model the observed data yj,t (jth time series at time t) using the VAR model,

yj,t =
p∑

i=1

L∑
l=1

𝜃ijSt ,lyi,t−l + 𝜖j,t; 𝜖j,t ∼ N(0, 𝜎2
St
). (4.4)

As before, p is the number of features, L is the maximum lag, and 𝜃ijStl is the coefficient of
the lth lagged variable of the ith time series for the model of the jth response variable when the
regime is given by St. Note that the state variables St ∈ {1,… ,K} are defined jointly on all
responses; that is, they do not depend on j. This introduces a tight coupling amongst models
for the different time-series, which is a departure from Sections 4.2 and 4.4 where a model for
each response could be estimated independently. Note that without introducing such coupling
amongst the different responses, we would not be able to define and identify regimes and
associated change points that are common across all responses. The states St are modeled as a
Markov chain using P ∈ ℝK×K as the transition probability matrix, where Pij is the transition
probability from state i to j:

Pij = ℙ(St = i|St−1 = j),∀i, j ∈ {1,… ,K}.
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We do not impose any restrictions on the structure of P, which allows for the random process
to go back to a previous state or forward to a new state (unlike in Chib (1998). From (4.4), if
two time points are from the same state, they will have the same set of autoregression coeffi-
cients; that is, 𝜃ijSt1l = 𝜃ijSt2l = 𝜃ijkl iff St1 = St2 = k. For simplicity, we denote the regression
coefficients at state k by 𝜃ijkl in the rest of this chapter.

Temporal Causal Modeling via the Bayesian Group Lasso
To map the VAR model coefficients into the dependency structure of the TCMs, we make
use of a group lasso technique for variable group selection. For a given (i, j, k), we define
𝜽ijk = [𝜃ijk1,… , 𝜃ijkL] as a coefficient group. We adapt the Bayesian hierarchical framework
for group variable selection in Lee et al. (2010) as follows:

𝜽ijk|𝜎2
ijk ∼ N(0, 𝜎2

ijk),

𝜎
2
ijk|𝜏ijk ∼ G

(
L + 1

2
, 2𝜏2

ijk

)
,

𝜏ijk|aijk, bijk ∼ IG(aijk, bijk), (4.5)

where G(a, b) represents a gamma distribution with density function f (x) = xa−1b−aΓ(a)−1

exp (−x∕b), and IG(a, b) represents an inverse gamma distribution whose density function
is f (x) = ba

Γ(a)x
−a−1exp (−b∕x). This hierarchical formulation implies an adaptive version of

the group lasso algorithm and allows for automatic update of the smoothing parameters. As
suggested in Lee et al. (2010), 𝜽ijk can be estimated by the following MAP estimate:

argmax
𝜽ijk

log L(𝜽ijk|aijk, bijk) + log ℙ(𝜽ijk|aijk, bijk) .

Integrating out 𝜎2
ijk, 𝜏ijk in (4.5), the marginal density for 𝜽ijk can be written as

ℙ(𝜽ijk|aijk, bijk) =
(2bijk)−L

𝜋
−(L−1)∕2Γ(L + aijk)

Γ((L + 1)∕2)Γ(aijk)

(‖𝜽ijk‖2

bijk
+ 1

)−aijk−L

,

where ‖𝜽ijk‖2 =
√∑L

l=1 𝜃
2
ijkl

is the 𝓁2 norm of 𝜽ijk. We note that the marginal distribution
includes the 𝓁2 norm of 𝜽ijk, which is directly related to the penalty term in the group lasso.
However, the marginal likelihood resulting from the hierarchical group lasso prior is not con-
cave, which means that search for the global mode by direct maximization is not feasible.
An alternative approach proposed in Lee et al. (2010) is to find local modes of the poste-
rior using the expectation–maximization (EM) algorithm (McLachlan and Krishnan, 2008)
with 𝜏ijk being treated as latent variables. This leads to the following iteratively reweighted
minimization algorithm,

𝜽
(m+1)
ijk

= argmax
𝜽ijk

log ℙ(Y|𝜽ijk) −𝑤
(m)
ijk

‖𝜽ijk‖2

where 𝑤(m)
ijk

= aijk+L‖𝜽(m)
ijk

‖2+bijk
. For the parameters in the transition probability matrix, we assign the

Dirichlet distribution as their prior distributions: for a given state k, the transition probabilities
to all possible states Pk⋅ = [Pk1,… ,PkK] take the form Pk⋅ ∝

∏K
k′=1 P

𝛼k′−1

kk′
, where 𝛼k′ are the

hyperparameters in the Dirichlet distribution. A popular choice is 𝛼k′ = 1, corresponding to a
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noninformative prior on the Pkk′s. The Dirichlet distribution – the conjugate prior for the multi-
nomial distribution – is a popular prior for the probabilities of discrete random variables due
to its computational efficiency. Note that the noninformative prior on the transition probability
does not imply that the states are equally likely at a transition; the transition probabilities will
also be updated according to the data likelihood. Finally, to complete the Bayesian hierarchical
model, we assign the following noninformative prior to the variances, q(𝜎2

k ) ∝
1
𝜎

2
k

.4

Choosing the Number of States
An important parameter in the previous sections was K, the number of states in the Markov
switching network. To determine this, we utilize the Bayesian information criterion (BIC)
(Schwarz, 1978), which is defined as −2log L(�̂�K) + dK log (N), where log L(�̂�K) is the log
likelihood of the observed data under �̂�K , dK is the number of parameters, and N is the number
of observations. The first term in BIC measures the goodness of fit for a Markov model with
K states, while the second term is an increasing function of the number of parameters dK ,
which penalizes the model complexity. Following (Yuan and Lin, 2006), the complexity of
our model with an underlying group sparse structure can be written as:

dK =
K∑

k=1

p∑
i=1

p∑
j=1

I(‖𝜽ijk‖ > 0) +
K∑

k=1

p∑
i=1

p∑
j=1

‖𝜽ijk‖‖𝜽LS
ijk‖ (L − 1),

where 𝜽LS
ijk are the parameters estimated by ordinary-least-squares estimates. We thus estimate

K̂, the total number of states, by the value that has minimum BIC value.

4.5.2 Algorithm

Let 𝚯 = {𝜽ijk}i,j=1,…,d;k=1,…,K , be the tensor of parameters, 𝝈2 = {𝜎2
k}k=1,…,K , and recall that

P is the transition matrix and Y is the observed data. The unknown parameters in our model
are 𝝍 = (𝚯,𝝈

2
,P), which we estimate using MAP estimates obtained by maximizing the pos-

terior distribution q(𝝍|Y). In this section, we develop an efficient algorithm to find the MAP
estimates using an EM approach (McLachlan and Krishnan, 2008) where the state variables
St are treated as missing data. When the goal is to find MAP estimates, the EM algorithm
converges to the local modes of the posterior distribution by iteratively alternating between
an expectation (E) step and a maximization (M) step, as follows. In the E-step, we compute
the expectation of the joint posterior distribution of latent variables and unknown parameters,
conditional on the observed data, denoted by Q(𝝍 ;𝝍 (m)). Let yt be the p-dimensional vector
of observations at time t, and Yt1∶t2

is the collection of the measurements from time t1 to t2.
For simplicity, we set D0 = {y1,… , yL} to be the initial information consisting of the first L
observations and then relabel yt ⇒ yt−L for t > L. Then we have,

Q(𝝍 ;𝝍 (m)) = 𝔼S,𝝉|Y,D0,𝝍
(m) [log ℙ(𝝍 , S, 𝝉|Y1∶T ,D0)]

=
T∑

t=1

K∑
k=1

Ltklog f (yt|Yt−1∶t−L, St = k,𝜽,𝝈2)

4 We use q(⋅) instead of the commonly used p(⋅) to denote probability distributions as we use p to refer to the number
of features/time-series and Pij to refer to the individual probabilities in P, the probability transition matrix.
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+
T∑

t=2

K∑
k=1

K∑
k′=1

Ht,k′klog ℙ(St = k|St−1 = k′,P)

+
K∑

k=1

L1klog 𝜋k −
p∑

i=1

p∑
j=1

K∑
k=1

𝑤ijk‖𝜽ijk‖2

−
K∑

k=1

log 𝜎
2
k +

K∑
k=1

K∑
k′=1

(𝛼k − 1)log Pk′k + constant,

where f (⋅) denotes the probability density function, Ltk = ℙ(St = k|Y1∶T ,D0,𝝍
(m)) and

Ht,k′k = ℙ(St−1 = k′, St = k|Y1∶T ,D0,𝝍
(m)) is the posterior probability of all hidden state

variables, and 𝜋k = ℙ(S1 = k|Y1∶T ,D0) is the probability of the initial state being k. In
the E-step, the posterior probability Ltk and Ht,k′k can be calculated using the three-step
backward-and-forward algorithm (Baum et al., 1970) as follows:

1. Compute the forward probability 𝛼
(m+1)
k

(t) = ℙ(Y1∶t, St = k|D0,𝝍
(m)) by going forward

iteratively in time

𝛼
(m+1)
k

(1) = ℙ(y1, S1 = k|D0,𝝍
(m))

= 𝜋
(m)
k

ℙ(y1|S1 = k,D0,𝝍
(m))

𝛼
(m+1)
k

(t) = ℙ(Y1∶t, St = k|D0,𝝍
(m))

=
K∑

k′=1

f (yt|Yt−L∶t−1, St = k,D0,𝝍
(m)) × P(m)

k′k
𝛼
(m+1)
k′

(t − 1)

2. Compute the backward probability 𝛽
(m+1)
k

(t) = f (Yt+1∶T | Y1∶t,D0, St = k,𝝍 (m)) by going
backward iteratively in time

𝛽
(m+1)
k

(T) = 1

𝛽
(m+1)
k

(t) = f (Yt+1∶T |Y1∶t,D0, St = k,𝝍 (m))

=
K∑

k′=1

f (yt+1|Yt∶t−L+1,D0, St+1 = k′,𝝍 (m)) × 𝛽k′ (t + 1)P(m)
kk′

3. Compute the posterior probability

L(m+1)
tk

= ℙ(St = k|Y1∶T ,D0,𝝍
(m))

=
𝛼
(m+1)(t)𝛽(m+1)(t)

f (Y1∶T |D0,𝝍
(m))

,

and

H(m+1)
t,k′k

= ℙ(St−1 = k′, St = k|Y1∶T ,D0,𝝍
(m))

= f (yt|St = k,Yt−1∶t−L,𝝍
(m)) ×

𝛼
(m+1)
k′

(t − 1)p(m)
k′k

𝛽
(m+1)
k

(t)

f (Y|D0,𝝍
(m))
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In the M-step, we update 𝝍 by maximizing Q(𝝍 ;𝝍 (m)), as follows.

1. The VAR coefficients 𝜽(m+1)
ijk

are estimated by minimizing

T∑
t=1

1
2
L(m+1)

tk

(
yj,t −

p∑
i=1

xti𝜽ijk

)2

∕𝜎2,(m)
k

+
p∑

i=1

𝑤
(m+1)
ijk

‖𝜽ijk‖2 ,

where xti = (yi,t−1,… , yi,t−L) and the updated weights are calculated as 𝑤
(m+1)
ijk

=
aijk+L‖𝜽(m)

ijk
‖2+bijk

. This regularized minimization problem can be transformed into a standard

group lasso formulation (Yuan and Lin, 2006) by appropriately rescaling yj,t and xti.
The resulting group lasso problem can be solved efficiently by using the optimization
procedure proposed by Meier et al. (2008).

2. The variance 𝜎
2,(m+1)
0,k

of each of the Markov states is updated as

𝜎
2,(m+1)
k

=
p∑

j=1

T∑
t=1

L(m+1)
tk

pT (m+1)
k

+ 2

(
yj,t −

p∑
i=1

xti𝜽
(m+1)
ijk

)2

where T (m+1)
k

=
∑T

t=1 L
(m+1)
tk

.
3. The transition probability P(m+1)

k′k
is updated as

P(m+1)
k′k

=

∑T
t=1 H(m+1)

t,k′k
+ 𝛼k − 1∑T

t=1 Ltk′ +
∑K

k=1(𝛼k − 1)

4. The initial probability 𝜋
(m+1)
k

= L(m+1)
1k

.

To summarize, the proposed EM algorithm is computationally efficient; the Q(𝝍 ,𝝍 (m)) can
be derived in closed form in the E-step, the maximization in the M-step can be transformed
into a standard group lasso formulation (Yuan and Lin, 2006), and the maximization can be
carried out very efficiently by using the optimization procedure in Meier et al. (2008). The
algorithm iterates between the E-step and M-step until it converges.

4.5.3 Synthetic Experiments

Data Synthesis
We investigate the performance of MS-TCM on synthetic data with respect to identifying the
switching states and the resulting TCM networks. We considered K = 2 and K = 5 states while
generating the synthetic data. The synthetic data are generated according to the following steps.

1. Generate the state assignment sequence. Instead of assuming that the true generative pro-
cess for the states is a Markov switching process, we randomly sampled T∕60 change points
and randomly assign states to each block. We relax the Markov assumption to test if our
model still enables us to identify the underlying true process under a more general and
realistic condition.
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2. Generate a random directed graph (the true network) with a specified edge probability. We
generated a set of p × p adjacency matrices A1,… ,AK , where the entry aijk = 1 indicates
that at Markov state k, yi influences yj, and aijk = 0 otherwise. The value of each entry was
chosen by sampling from a binomial distribution, where the probability that an entry equals
to one was set to 0.2.

3. Create a sparse Markov switching VAR model that corresponds to the Markov states and the
networks generated in the previous two steps. For each Markov state, the VAR coefficients
aijkl, l = 1,… ,L were sampled according to a normal distribution with mean 0 and SD 0.20
if aijkl = 1, and set to be 0 otherwise. The noise SD was set at 0.01 for all states.

4. Simulate data from the above switching VAR model. The sample size per feature per lag per
state was set at 10. We considered p = 12 and maximum lags L = 1 and L = 3.

Evaluation
To evaluate the accuracy of the switching states estimation, we use the Rand index (Rand,
1971), where we treat the switching modeling problem as clustering T multivariate data vector
yt = (y1,t,… , yp,t) into K Markov states. The Rand index is often used to measure the clustering
error and is defined as the fraction of all misclustered pairs of data vectors (yt, ys). Letting C∗

and ̂C denote the true and estimated clustering maps, respectively, the Rand index is defined

by R =
∑

t<sI( ̂C(yt ,ys)≠C∗(yt ,ys))
( T

2 )
. To evaluate the accuracy of the DBN estimation, we use the F1

score: larger values of the Rand index and F1 score indicate higher accuracy.
We compare our method (MS-TCM) with two comparison methods: Fused-DBN and

TV-DBN. Fused-DBN is a change point detection method extending the method of Kolar
et al. (2009) to the VAR setting, which estimates change points via fused lasso penalized
regression and subsequently estimates sparse static networks for each segment separately.
TV-DBN (Song et al., 2009) is used, although the simulation setting is not favorable to it,
only to illustrate that in real-world settings where networks are not smoothly and constantly
varying over time, approaches like TV-DBN usually fall short.

Results
The results of our experiments are summarized in Table 4.5, where we show respectively the
average F1 score for MS-TCM, Fused-DBN, and TV-DBN, and the average Rand index for our
method only (since to our knowledge our method is the only method allowing for regime iden-
tification in DBNs) over 100 runs, along with the standard errors. Overall, MS-TCM has very
good accuracy under a varying number of Markov states. Rand indices do not change much
from small- to large-number states, which suggests similar accuracy in change point detection.
The F1 scores, smaller under L = 1, suggest that the dependency structure may be more accu-
rately recovered when the relationships involve multiple time lags, illustrating the value of our
Bayesian group lasso subprocedure. This approach achieves significantly better F1 accuracy
than the other methods for all the cases considered. Computationally, our algorithm is more
efficient when compared to Fused-DBN as Fused-DBN involves applying randomized lasso
to a transformed data matrix of dimensions T × Tp; this implies that the number of features
effectively considered is T times higher than the actual number of features. This can be a signif-
icant impediment even in low-dimensional settings; for example, for 10 features and 1000 time
points, one has to work with 10,000 features after the transformation. In addition, Fused-DBN
is unable to leverage the grouping structure corresponding to dependencies with L > 1.
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Table 4.5 Accuracy of comparison methods in identifying the correct Bayesian networks measured
by the average Rand index and F1 score on synthetic data with a varying number of Markov states (K)
and lags (L). The numbers in the parentheses are standard errors

Type Method K = 2 K = 2 K = 5 K = 5
L = 1 L = 3 L = 1 L = 3

Rand MS-TCM 0.94 0.96 0.97 0.97
index (0.02) (0.02) (0.005) (0.06)

Fused-DBN N∕A N∕A N∕A N∕A
TV-DBN N∕A N∕A N∕A N∕A

F1 MS-TCM 0.76 0.91 0.76 0.87
score (0.05) (0.12) (0.03) (0.17)

Fused-DBN 0.48 0.50 0.53 0.52
(0.02) (0.03) (0.04) (0.02)

TV-DBN 0.36 0.38 0.50 0.40
(0.02) (0.02) (0.06) (0.04)

Another strength of MS-TCM, compared to Fused-DBN and other change point–based
methods proposed in the literature, is in the setting of regime change identification. In the
existing methods, once the change points have been estimated, the coefficients are estimated
individually for each interval. Hence, if some of the intervals between two subsequent change
points are small (which may happen in many practical situations), the algorithms may be forced
to work with extremely small sample size, thus leading to poor estimates. In contrast, our
method considers all states and allows for return to previous states. It is thus able to borrow
strength across a wider number of samples that may be far away in time.

We now turn our attention to the results obtained by MS-TCM, using the synthetic data
with K = 2 and L = 1. According to BIC, the number of states K is estimated as 2. In the
left panel of Figure 4.7, we show the Markov path estimated by our method and the true path
for a particular simulation run, where the transition jumps highlighted in red in the true path
(upper panel) are those missed by our method. As shown in the plot, MS-TCM is able to
detect the change points with very little delay. We also observe that MS-TCM tends to miss
a transition when the process remains in a single state for too short a duration. In practice,
however, such transient jumps rarely happen or may be of less interest in real applications. In
the right panel of Figure 4.7 we show the corresponding estimated Bayesian networks along
with the true networks. In the true networks (left column), we highlighted in red the false
negatives (edges that exist in the true graphs but are missed in the estimated graphs) and in
the estimated networks (right column) we highlighted in green the false positives (edges that
do not exist in the true graphs but are selected in the method). As we can see from the plot,
the estimated Bayesian networks exhibit reasonable agreement with the true networks.

4.5.4 Application: Analyzing Stock Returns

To demonstrate MS-TCM’s utility in finance, we apply MS-TCM on monthly stock return
data from 60 monthly stock observations from 2004-10-01 to 2009-09-01 for 24 stocks in six
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Figure 4.7 (Left) Output switching path on one synthetic dataset with two Markov states. Transition
jumps missing in the estimated Markov path are highlighted in red. (Right) The corresponding output
networks: (a) true network at state 1; (b) estimated network at state 1; (c) true network at state 2; and (d)
estimated network at state 2. Edges coded in red are the false positives, and those in green are the false
negatives.

industries. For simplicity, we consider that each state is associated to a VAR model with lag 1.
MS-TCM identifies one change point at the 19th time point. The VAR model coefficients for
the TCM models concerning Citigroup (C), before and after that change point, are presented
in Figure 4.8 along with the model produced when assuming a single static causal model (i.e.,
running vanilla TCM). By examining the models, one can get some insights on the varying
causal relationships. Another benefit of this approach is the potential to improve forecasting
accuracy. For instance, if we treat the 60th time point as unobserved, then MS-TCM can fore-
cast this point with relative error of 0.5%, while a static TCM approach has a higher relative
error of 26%.5

4.6 Conclusions

In this chapter, we presented TCM, a method that builds on Granger causality and generalizes
it to multivariate time-series by linking the causality inference process to the estimation of
sparse VAR models. We also presented extensions to TCM that allow users to determine causal
strengths of causal relationships, use quantile loss functions, and automatically identify and
efficiently model regime changes with TCM. TCM and its extensions that were presented in
this chapter can be an important tool in financial analysis.

5 It is possible to leave out and predict more points than 1; we choose to predict just the 60th point for simplicity.
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Figure 4.8 Results of modeling monthly stock observations using MS-TCM. MS-TCM uncovered a
regime change after the 19th time step; columns Model 1 and Model 2 contain the coefficients of
the corresponding two TCM models. The column Model all gives the coefficients when plain TCM
without regime identification is used. The symbols C, KEY, WFC, and JPM are money center banks;
SO, DUK, D, HE, and EIX are electrical utilities companies; LUX, CAL, and AMR are major airlines;
AMGN, GILD, CELG, GENZ, and BIIB are biotechnology companies; CAT, DE, and HIT are machinery
manufacturers; IMO, HES, and YPF are fuel refineries; and X.GPSC is an index.

Further Reading
There are some extensions to TCM that were not covered in this chapter. For example, in order
to expose the readers to a variety of approaches, we presented some extensions of TCM using
group OMP, and others using group lasso or Bayesian variants. We encourage the readers to
experiment with these methods to determine the “best” method for their specific problems.
Other extensions that were not covered include extending TCM for modeling spatiotemporal
data (Lozano et al., 2009c), modeling multiple related time-series datasets (Liu et al., 2010),
and modeling nonlinear VAR models (Sindhwani et al., 2013).
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Explicit Kernel and Sparsity of
Eigen Subspace for the AR(1)
Process

Mustafa U. Torun, Onur Yilmaz and Ali N. Akansu
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5.1 Introduction

Karhunen–Loeve Transform (KLT), also called Eigen decomposition or principal component
analysis (PCA), is the optimal orthogonal subspace method (block transform) that maps
wide-sense stationary (WSS) stochastic signals with correlations into nonstationary and
pairwise uncorrelated transform coefficients. The coefficient with the highest variance
corresponds to the most covariability among the observed signals, hence the most meaningful
information (Akansu and Haddad, 1992). Therefore, the coefficients with large variances are
kept and the ones with low variances corresponding to noise are discarded in noise-filtering
and compression applications (Jolliffe, 2002). KLT basis functions are the eigenvectors of
the given signal covariance matrix that define the corresponding unique eigen subspace.
Therefore, it is a signal-dependent transform as opposed to some other popular transforms
like discrete Fourier transform (DFT) and discrete cosine transform (DCT). DFT and DCT
have their kernels that are independent of signal statistics. They are called fixed transforms,
and their good performance with efficient implementations make them desirable choices for
various applications (Akansu and Haddad, 1992). Fast implementation of KLT is of great
interest to several disciplines, and there were attempts to derive closed-form kernel expres-
sions for certain classes of stochastic processes. Such kernels for continuous and discrete
stochastic processes with exponential autocorrelation function were reported in the literature
(Davenport and Root, 1958; Pugachev, 1959a,b; Ray and Driver, 1970; Wilkinson, 1965). We
focus on the discrete autoregressive order one, AR(1), and the process and derivation of its
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explicit eigen kernel, in this chapter. In Section 5.4, we investigate the sparsity of such eigen
subspace and present a rate-distortion theory-based sparsing method. Moreover, we highlight
the merit of the method for the AR(1) process as well as for the empirical correlation matrix
of stock returns in the NASDAQ-100 index.

5.2 Mathematical Definitions

5.2.1 Discrete AR(1) Stochastic Signal Model

Random processes and information sources are often described by a variety of stochastic
signal models, including autoregressive (AR), moving average (MA), and autoregressive
moving average (ARMA) types. Discrete AR source models, also called all-pole models,
have been successfully used in applications including speech processing for decades (Atal
and Hanauer, 1971). The first-order AR model, AR(1), is a first approximation to many
natural signals and has been widely employed in various disciplines. Its continuous analogue
is called the Ornstein–Uhlenbeck (OU) process with popular use in physical sciences and
mathematical finance (Doob, 1942; Uhlenbeck and Ornstein, 1930). The AR(1) signal is
generated through the first-order regression formula written as (Akansu and Haddad, 1992;
Kay, 1988):

x(n) = 𝜌x(n − 1) + 𝜉(n), (5.1)

where 𝜉(n) is a zero-mean white noise sequence, that is,

E{𝜉(n)} = 0,

E{𝜉(n)𝜉(n + k)} = 𝜎
2
𝜉
𝛿k. (5.2)

E{⋅} is the expectation operator, and 𝛿k is the Kronecker delta function. The first-order cor-
relation coefficient, 𝜌, is real in the range of −1 < 𝜌 < 1, and the variance of x(n) is given as
follows:

𝜎
2
x =

1

(1 − 𝜌
2)
𝜎

2
𝜉
. (5.3)

The autocorrelation sequence of x(n) is expressed as

Rxx(k) = E{x(n)x(n + k)} = 𝜎
2
x𝜌

|k|; k = 0,±1,±2,… . (5.4)

The resulting N × N Toeplitz autocorrelation matrix for the AR(1) process is expressed as

Rx = 𝜎
2
x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜌 𝜌
2 … 𝜌

N−1

𝜌 1 𝜌 … 𝜌
N−2

𝜌
2

𝜌 1 … 𝜌
N−3

⋮ ⋮ ⋮ ⋱ ⋮

𝜌
N−1

𝜌
N−2

𝜌
N−3 … 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.5)
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5.2.2 Orthogonal Subspace

A family of linearly independent N orthonormal real discrete-time sequences (vectors),
{𝜙k(n)}, on the interval 0 ≤ n ≤ N − 1, satisfies the inner product relationship (Akansu and
Haddad, 1992)

N−1∑
n=0

𝜙k(n)𝜙l(n) = 𝛿k−l =
{

1 k = l
0 k ≠ l

. (5.6)

Equivalently, the orthonormality can also be expressed on the unit circle of the complex plane,
z = ej𝜔; −𝜋 ≤ 𝜔 ≤ 𝜋, as follows:

N−1∑
n=0

𝜙k(n)𝜙l(n) =
1

2𝜋 ∫

𝜋

−𝜋
Φk(ej𝜔)Φl(ej𝜔)d𝜔 = 𝛿k−l, (5.7)

where Φk(ej𝜔) is the discrete time Fourier transform (DTFT) of 𝜙k(n). In matrix form, {𝜙k(n)}
are the rows of the transform matrix, also called basis functions:

Φ = [𝜙k(n)] ∶ k, n = 0, 1,… ,N − 1, (5.8)

with the matrix orthonormality property stated as

ΦΦ−1 = ΦΦT = I, (5.9)

where T indicates a transposed version of a matrix or a vector. A random signal vector

x =
[
x(0) x(1) … x(N − 1)

]T
, (5.10)

is mapped onto the orthonormal subspace through a forward transform operator (projection)

𝜽 = Φx, (5.11)

where 𝜽 is the transform coefficients vector given as

𝜽 =
[
𝜃0 𝜃1 … 𝜃N−1

]T
. (5.12)

Similarly, the inverse transform reconstructs the signal vector

x = Φ−1
𝜽 = ΦT

𝜽. (5.13)

Hence, one can derive the correlation matrix of transform coefficients as follows:

R
𝜃
= E{𝜽𝜽T} = E{ΦxxTΦT} = ΦE{xxT}ΦT = ΦRxΦT. (5.14)

Furthermore, total energy represented by the transform coefficients is written as:

E{𝜽T
𝜽} =

N−1∑
k=0

E{𝜃2
k} =

N−1∑
k=0

𝜎
2
k . (5.15)

It follows from (5.9) and (5.11) that

E{𝜽T
𝜽} = E{xTΦTΦx} = E{xTx} =

N−1∑
n=0

𝜎
2
x (n) = N𝜎

2, (5.16)
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where 𝜎2
x (n) is the variance of the nth element of the signal vector given in (5.10) that is equal

to 𝜎
2. It follows from (5.15) and (5.16) that

𝜎
2 =

1
N

N−1∑
k=0

𝜎
2
k . (5.17)

The energy-preserving property of an orthonormal transform is evident in (5.17). It is also
noted in (5.11) that the linear transformation of the stationary random vector process x results
in a nonstationary random coefficient vector process 𝜽, that is, 𝜎2

k ≠ 𝜎
2
l for k ≠ l (Akansu and

Haddad, 1992).

5.2.2.1 Karhunen–Loeve Transform (Eigen Subspace)

KLT jointly provides the (i) optimal geometric mean of coefficient variances with a diago-
nal correlation matrix, R

𝜃
, in (5.14); and (ii) best possible repacking of signal energy into as

few transform coefficients as possible. KLT minimizes the energy of the approximation error
due to use of only L basis functions L ≤ N in order to approximate covariance subject to the
orthonormality constraint given in (5.9). Hence, the cost function is defined as (Akansu and
Haddad, 1992):

J =
N−1∑
k=L

Jk = E{eT
LeL} −

N−1∑
k=L

𝜆k(𝝓T
k𝝓k − 1), (5.18)

where 𝜆k is the kth Lagrangian multiplier. (5.18) can be rewritten as

J =
N−1∑
k=L

Jk =
N−1∑
k=L

𝝓
T
k Rx𝝓k −

N−1∑
k=L

𝜆k(𝝓T
k𝝓k − 1). (5.19)

Taking gradient of one of the components of the error J (i.e., Jk), with respect to 𝝓k and setting
it to zero as follows (Akansu and Haddad, 1992):

∇Jk =
𝜕Jk

𝜕𝝓k
= 2Rx𝝓k − 2𝜆k𝝓k = 0, (5.20)

yields
Rx𝝓k = 𝜆k𝝓k, (5.21)

which implies that 𝝓k is one of the eigenvectors of Rx and 𝜆k is the corresponding eigenvalue.
It is evident from (5.21) that the basis set for KLT comprises the eigenvectors of the autocor-
relation matrix of the input (i.e., Rx), and it needs to be recalculated whenever signal statistics
change. It follows from (5.21) that

RxAT
KLT = AT

KLT𝚲,

Rx = AT
KLT𝚲AKLT =

N−1∑
k=0

𝜆k𝝓k𝝓
T
k , (5.22)

where 𝚲 = diag(𝜆k); k = 0, 1,… ,N − 1; and the kth column of AT
KLT matrix is the kth

eigenvector 𝝓k of Rx with the corresponding eigenvalue 𝜆k. It is noted that {𝜆k = 𝜎
2
k}∀k,
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for the given Rx where 𝜎
2
k is the variance of the kth transform coefficient, 𝜃k (Akansu and

Haddad, 1992).

5.2.2.2 Performance Metrics for Orthogonal Subspaces

In practice, it is desired that variances of the transform coefficients decrease as the coefficient
index k increases, and so the signal energy is consolidated into as small a number of transform
coefficients as possible (Akansu and Haddad, 1992). In other words, it is desired to minimize
the energy of the approximation error defined as:

eL = x − x̂L =
N−1∑
k=0

𝜃k𝝓k −
L−1∑
k=0

𝜃k𝝓k =
N−1∑
k=L

𝜃k𝝓k, (5.23)

where 0 < L ≤ N − 1. There are three commonly used metrics to measure the performance
of a given orthonormal transform (subspace) (Akansu and Haddad, 1992). The compaction
efficiency of a transform, that is, the ratio of the energy in the first L transform coefficients to
the total energy, is defined as

𝜂E(L) = 1 −
E{eT

LeL}
E{eT

0
e0}

=
∑L−1

k=0 𝜎
2
k

N𝜎
2
x

. (5.24)

This is an important metric to assess the efficiency of a transform for the given signal type.
The gain of transform coding (TC) over pulse code modulation (PCM) performance of an

N × N unitary transform for a given input correlation is particularly significant and widely
utilized in transform coding applications as defined:

GN
TC =

1
N

∑N−1
k=0 𝜎

2
k(∏N−1

k=0 𝜎
2
k

)1∕N
. (5.25)

Similarly, decorrelation efficiency of a transform is defined as

𝜂c = 1 −
∑N−1

k=0
∑N−1

l=1;l≠k|R𝜃
(k, l)|∑N−1

k=0
∑N−1

l=1;l≠k|Rx(k, l)| . (5.26)

It is desired to have high compaction efficiency, 𝜂E(L); high gain of TC over PCM, GN
TC; and

high decorrelation efficiency, 𝜂c, for a given N × N orthonormal transform. Detailed discus-
sion on the performance metrics for the orthonormal transforms can be found in Akansu and
Haddad, 1992.

In Figure 5.1a, 𝜂E(L) of KLT and the popular fixed transform DCT (Akansu and Haddad,
1992) are displayed for the AR(1) process with various correlation coefficients 𝜌 and trans-
form size N = 31. Similarly, Figure 5.1b depicts GN

TC performances of KLT and DCT as a
function of 𝜌 for N = 31. This figure justifies the use of fixed transform DCT as a replacement
to signal-dependent KLT in applications where signal samples are highly correlated. More-
over, it is noted that the energy-packing performances of both transforms degrade for lower
values of correlation coefficient. Hence, subspace methods bring less value for applications
where signal correlation is low.



�

� �

�

72 Financial Signal Processing and Machine Learning

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

η
E
(L

)

L
(a)

ρ = 0.5 (KLT)
ρ = 0.5 (DCT)
ρ = 0.75 (KLT)
ρ = 0.75 (DCT)
ρ = 0.9 (KLT)
ρ = 0.9 (DCT)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

ρ

(b)

G
T

C

KLT
DCT

Figure 5.1 (a) 𝜂E(L) Performance of KLT and DCT for an AR(1) process with various values of 𝜌 and
N = 31; (b) GN

TC performance of KLT and DCT as a function of 𝜌 for N = 31.

5.3 Derivation of Explicit KLT Kernel for a Discrete AR(1) Process

A KLT matrix AKLT of size N × N for an AR(1) process is expressed with the closed-form
kernel as (Ray and Driver, 1970):

AKLT = [A(k, n)] =
(

2
N + 𝜆k

)1∕2

sin

[
𝜔k

(
n −

N − 1
2

)
+

(k + 1)𝜋
2

]
, (5.27)

where 0 ≤ k, n ≤ N − 1. Corresponding transform coefficient variances (i.e., the eigenvalues
of the autocorrelation matrix given in (5.5), 𝜆k) are derived to be in the closed form (Ray and
Driver, 1970):

𝜎
2
k = 𝜆k =

1 − 𝜌
2

1 − 2𝜌 cos(𝜔k) + 𝜌
2

, (5.28)

where {𝜔k} are the positive roots of the following transcendental equation (Ray and Driver,
1970):

tan(N𝜔) = −
(1 − 𝜌

2) sin(𝜔)
cos(𝜔) − 2𝜌 + 𝜌

2 cos(𝜔)
. (5.29)

The derivation steps leading to the equations (5.27), (5.28), and (5.29) will be explained
throughout this section. Moreover, there is a need to derive an explicit expression for the roots
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of the transcendental equation in (5.29) such that the kernel (eigenvectors) and the correspond-
ing variances (eigenvalues) are expressed accordingly.

5.3.1 A Simple Method for Explicit Solution of a Transcendental Equation

A simple method of formulating an explicit solution for the roots of transcendental equations
using Cauchy’s integral theorem from complex analysis (Strang, 1986) that was introduced
by Luck and Stevens (2002) is highlighted in this section. The method determines the roots
of a transcendental function by locating the singularities of a reciprocal function. Although
derivation steps are detailed in Luck and Stevens (2002), a summary is given here for the
completeness of presentation.

Cauchy’s theorem states that if a function is analytic in a simple connected region containing
the closed curve C, the path integral of the function around the curve C is zero. On the other
hand, if a function, f (z), contains a single singularity at z0 somewhere inside C but analytic
elsewhere in the region, then the singularity can be removed by multiplying f (z) with (z − z0)
(i.e., by a pole-zero cancellation). Cauchy’s theorem implies that the path integral of the new
function (z − z0) f (z) around C must be zero:

∳

C

(z − z0)f (z)dz = 0. (5.30)

Evaluation of the integral given in (5.30) yields a first-order polynomial in z0 with constant
coefficients, and its solution for z0 provides the location of the singularity as given (Luck and
Stevens, 2002)

z0 =
∳Czf (z)dz

∳Cf (z)dz
. (5.31)

This is an explicit expression for the singularity of the function f (z). A root-finding problem is
restated as a singularity at the root. It is noted that (5.31) gives the location of the desired root,
and it can be evaluated for any closed path by employing either an analytical or a numerical
technique. Luck and Stevens (2002) suggested to use a circle in the complex plane with its
center h and radius R as the closed curve C, expressed as

z = h + Rej𝜃
,

dz = jRej𝜃d𝜃, (5.32)

where 0 ≤ 𝜃 ≤ 2𝜋; h ∈ ℝ; and R ∈ ℝ; Values of h and R do not matter as long as the circle
circumscribes the root z0. Cauchy’s argument principle (Brown and Churchill, 2009) or graph-
ical methods may be used to determine the number of roots enclosed by the path C. A function
in 𝜃 is defined as

𝑤(𝜃) = f (z)|z=h+Rej𝜃 = f (h + Rej𝜃). (5.33)

Then (5.31) becomes (Luck and Stevens, 2002):

z0 = h + R

[
∫

2𝜋
0 𝑤(𝜃)ej2𝜃d𝜃

∫
2𝜋

0 𝑤(𝜃)ej𝜃d𝜃

]
. (5.34)
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One can easily evaluate (5.34) by employing Fourier analysis since the nth Fourier series coef-
ficient for any x(t) is calculated as

An =
1

2𝜋 ∫

2𝜋

0
x(t)ejntdt. (5.35)

It is observed that the term in brackets in (5.34) is equal to the ratio of the second Fourier
series coefficient over the first one for the function 𝑤(𝜃). Fourier series coefficients can be
easily calculated numerically by using DFT or by using its fast implementation, Fast Fourier
transform (FFT), as is suggested in Luck and Stevens (2002). However, it is observed from
(5.34) that one does not need all DFT coefficients to solve the problem since it requires only
two Fourier series coefficients. Therefore, it is possible to further improve the computational
cost by employing a discrete summation operator to implement (5.34) numerically. Hence, the
algorithm would have a computational complexity of O(N) instead of O(NlogN) required for
FFT algorithms.

It is also noted that given f (z) is analytic at h, multiplying f (z) by a factor (z − h) = Rej𝜃

does not change the location of the singularities of f (z). It means that for a given singularity,
the term in brackets is also equal to any ratio of the (m + 1)th to the mth Fourier series coef-
ficients of 𝑤(𝜃) for m ≥ 1 (Luck and Stevens, 2002). The MATLABTM code given in Torun
and Akansu (2013) to calculate the roots of (5.43) shows the simplicity of the method to solve
such transcendental equations.

5.3.2 Continuous Process with Exponential Autocorrelation

The classic problem of deriving explicit solutions for characteristic values and functions
of a continuous random process with an exponential autocorrelation function provides the
foundation for the derivation of explicit KLT kernel for a discrete AR(1) process. This
problem is discussed in Davenport and Root (1958) and Van Trees (2001). Similar discussions
can also be found in Pugachev (1959a,b). After some derivation steps, the characteristic
equation of the process is expressed as

𝜙
′′(t) +

𝛼(2 − 𝛼𝜆)
𝜆

𝜙(t) = 0, (5.36)

and (5.36) has a solution only in the range of 0 < 𝜆 <
2
𝛼

and is rewritten as (Davenport and
Root, 1958):

𝜙
′′(t) + b2

𝜙(t) = 0, (5.37)

where
b2 =

𝛼(2 − 𝛼𝜆)
𝜆

, 0 < b2
< ∞. (5.38)

A general solution to (5.37) is given as

𝜙(t) = c1ejbt + c2e−jbt, (5.39)

where c1 and c2 are arbitrary constants. A solution is possible only when c1 = c2 or c1 = −c2.
For c1 = c2, it is shown that one of the unknowns in the general solution is given in (5.39), b,
satisfies the equation (Davenport and Root, 1958)

b tan b
T
2
= 𝛼. (5.40)
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It follows from (5.39) that for every positive bk that satisfies the transcendental equation (5.40),
there is a characteristic function that satisfies the characteristic equation and given as (Daven-
port and Root, 1958):

𝜙k(t) = ck cos bkt, (5.41)

where integer k ≥ 0. Similarly, for c1 = −c2, b, one can derive the resulting characteristic
functions as

𝜙k(t) = ck sin bkt. (5.42)

The steps required to determine the roots of (5.40) are summarized next. We can rewrite (5.40)
for 𝛼 = B and T = 2 as

b tan b = B. (5.43)

Positive roots of (5.43), bm > 0, must be calculated in order to determine the even indexed
characteristic values and functions. Figure 5.2 displays functions tan(b) and B∕b for various
values of B. It is observed from the figure that for the mth root, a suitable choice for the closed
path C is a circle of radius R = 𝜋∕4 centered at hm = (m − 3∕4)𝜋, as suggested in (Luck and
Stevens, 2002). A straightforward way to configure (5.43) to introduce singularities is to use
the inverse of (5.43) rearranged as follows (Luck and Stevens, 2002):

f (b) =
1

b sin(b) − B cos(b)
. (5.44)

Applying (5.34) to (5.44) results in an explicit expression for the mth root. This expression
can be evaluated by calculating a pair of adjacently indexed DFT coefficients (coefficients of

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

b/π

tan(b)
B1/b

B2/b

B3/b

Figure 5.2 Functions tan(b) and B∕b for various values of B where B1 = 1, B2 = 2, and B3 = 3.
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two adjacent harmonics), as described in Section 5.3.1, or by using a numerical integration
method. Therefore, by setting b = h + Rej𝜃 , 𝑤m(𝜃) of (5.33) for this case is defined as:

𝑤m(𝜃) = f (hm + Rej𝜃),

=
1

(hm + Rej𝜃) sin(hm + Rej𝜃) − B cos(hm + Rej𝜃)
, (5.45)

where 0 ≤ 𝜃 ≤ 2𝜋. Hence, the location of the mth root is explicitly defined as

bm = hm + R

[
∫

2𝜋
0 𝑤m(𝜃)ej2𝜃d𝜃

∫
2𝜋

0 𝑤m(𝜃)ej𝜃d𝜃

]
. (5.46)

5.3.3 Eigenanalysis of a Discrete AR(1) Process

In this section, derivations of (5.27), (5.28), and (5.29) are given in detail. For a a discrete
random signal (process), x(n), a discrete Karhunen–Loeve (K-L) series expansion is given as
follows (Akansu and Haddad, 1992):

N−1∑
m=0

Rxx(n,m)𝜙k(m) = 𝜆k𝜙k(n), (5.47)

where m and n are the independent discrete variables;

Rxx(n,m) = E{x(n)x(m)},m, n = 0, 1,… ,N − 1, (5.48)

is the autocorrelation function of the random signal; 𝜆k is the kth eigenvalue; and 𝜙k(n) is the
corresponding kth eigenfunction. The autocorrelation function of the stationary discrete AR(1)
process is given as (Papoulis, 1991):

Rx(n,m) = Rx(n − m) = 𝜌
|n−m|. (5.49)

Hence, the discrete K-L series expansion for an AR(1) process, from (5.47) and (5.49), is stated
as follows

N−1∑
m=0

𝜌
|n−m|

𝜙k(m) = 𝜆k𝜙k(n). (5.50)

In order to eliminate the magnitude operator, (5.50) can be rewritten in the form

n∑
m=0

𝜌
n−m

𝜙k(m) +
N−1∑

m=n+1

𝜌
m−n

𝜙k(m) = 𝜆k𝜙k(n). (5.51)

It follows from the continuous case presented in Section 5.3.2 that the general solution for the
kth eigenvector is given as (Davenport and Root, 1958; Van Trees, 2001):

𝜙k(t) = c1ej𝜔kt + c2e−j𝜔kt, (5.52)

where c1 and c2 are arbitrary constants; t is the independent continuous variable; −T∕2 ≤

t ≤ T∕2; and 𝜔k = bk. The eigenfunction given in (5.52) is shifted by T∕2 and sampled at
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tn = nTs, 0 ≤ n ≤ N − 1, where Ts = T∕(N − 1). Accordingly, the sampled eigenfunction is
written as

𝜙k(n) = c1ej𝜔k(n−N−1
2 ) + c2e−j𝜔k(n−N−1

2 ). (5.53)

The solution to (5.50) exists only when c1 = ±c2. In the following discussions, the case for
c1 = c2 is considered given the fact that the sister case for c1 = −c2 is similar. For c1 = c2, it
follows from (5.53) that

𝜙k(n) = c1 cos

[
𝜔k

(
n −

N − 1
2

)]
. (5.54)

By substituting (5.54) in (5.51) and defining a new independent discrete variable p = m − (N −
1)∕2, (5.50) can be rewritten as follows:

n− N−1
2∑

p=− N−1
2

𝜌
n−p− N−1

2 cos(𝜔kp) +

N−1
2∑

p=n+1− N−1
2

𝜌
p+ N−1

2 −n cos(𝜔kp) (5.55)

= 𝜆k cos

[
𝜔k

(
n −

N − 1
2

)]
. (5.56)

The first summation on the left in (5.55) is rewritten as

1
2
𝜌

n− N−1
2

⎡⎢⎢⎣
n− N−1

2∑
p=− N−1

2

(
𝜌
−1ej𝜔k

)p +
n− N−1

2∑
p=− N−1

2

(𝜌−1e−j𝜔k )p
⎤⎥⎥⎦ . (5.57)

Using the fact that
N2∑

n=N1

𝛽
n =

𝛽
N1 − 𝛽

N2+1

1 − 𝛽

, (5.58)

and following simple derivation steps, it can be shown that (5.57), hence the first summation
on the left in (5.55), is equal to

𝜌
n+2 cos𝜔1 − 𝜌 cos𝜔2 − 𝜌

n+1 cos𝜔3 + cos𝜔4

1 − 2𝜌 cos𝜔k + 𝜌
2

. (5.59)

Similarly, the second summation on the left in (5.55) is equal to

𝜌
N−n+1 cos𝜔1 + 𝜌 cos𝜔2 − 𝜌

N−n cos𝜔3 − 𝜌
2 cos𝜔4

1 − 2𝜌 cos𝜔k + 𝜌
2

, (5.60)

where

𝜔1 = 𝜔k[(N − 1)∕2],

𝜔2 = 𝜔k[n − (N − 1)∕2 + 1],

𝜔3 = 𝜔k[(N − 1)∕2 + 1],

𝜔4 = 𝜔k[n − (N − 1)∕2], (5.61)
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for both (5.59) and (5.60). It is possible to express 𝜆k on the right-hand side of (5.55) in terms
of 𝜌 and 𝜔k by taking the discrete K-L expansion given in (5.50) into the frequency domain
via DTFT as follows:

Sx(ej𝜔)Φk(ej𝜔) = 𝜆kΦk(ej𝜔), (5.62)

where Sx(ej𝜔) is the power spectral density (PSD) of the discrete AR(1) process and expressed
as

Sx(ej𝜔) = F{𝜌|n−m|} =
1 − 𝜌

2

1 − 2𝜌 cos𝜔 + 𝜌
2

. (5.63)

F{⋅} is the DTFT operator (Akansu and Haddad, 1992). The Fourier transform of the eigen-
function in (5.54) is calculated as

Φk(ej𝜔) = F{𝜙k(n)},

= c1e−j𝜔k
N−1

2 [𝛿(𝜔 − 𝜔k) + 𝛿(𝜔 + 𝜔k)], (5.64)

where 𝛿(𝜔 − 𝜔0) is an impulse function of frequency located at 𝜔0. By substituting (5.63) and
(5.64) into (5.62), 𝜆k is derived as

𝜆k =
1 − 𝜌

2

1 − 2𝜌 cos𝜔k + 𝜌
2

. (5.65)

Equation (5.65) shows that the eigenvalues are the samples of the PSD given in (5.63). More-
over, (5.28) and (5.65) are identical. By substituting (5.59), (5.60), and (5.65) in (5.51), one
can show that

𝜌 =
cos(𝜔kN∕2 + 𝜔k∕2)
cos(𝜔kN∕2 − 𝜔k∕2)

. (5.66)

Using trigonometric identities, the relationship between 𝜔k and 𝜌 in (5.66) is rewritten as
follows

tan

(
𝜔k

N
2

)
=
(

1 − 𝜌

1 + 𝜌

)
cot

(
𝜔k

2

)
. (5.67)

Similarly, for the case of c1 = −c2, following the same procedure, the relationship between 𝜔k
and 𝜌 is shown as

tan

(
𝜔k

N
2

)
= −

(
1 + 𝜌

1 − 𝜌

)
tan

(
𝜔k

2

)
. (5.68)

Finally, from (5.67) and (5.68), it is observed that 𝜔k are the positive roots of the equation[
tan

(
𝜔

N
2

)
+

1 + 𝜌

1 − 𝜌

tan
(
𝜔

2

)] [
tan

(
𝜔

N
2

)
−

1 − 𝜌

1 + 𝜌

cot
(
𝜔

2

)]
= 0. (5.69)

Using trigonometric identities, (5.69) can be rewritten as

tan(N𝜔) = −
(1 − 𝜌

2) sin(𝜔)
cos(𝜔) − 2𝜌 + 𝜌

2 cos(𝜔)
, (5.70)

which is the same transcendental equation expressed in (5.29). The roots {𝜔k} of the tran-
scendental tangent equation in (5.70) are required in the KLT kernel expressed in (5.27).
There are well-known numerical methods like the secant method (Allen and Isaacson, 1997)
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to approximate roots of the equation given in (5.70) in order to solve it implicitly rather than
explicitly. A method to find explicit solutions to the roots of transcendental equations, includ-
ing (5.70), is revisited next. That method leads to an explicit definition of KLT kernel given in
(5.27) for an AR(1) process.

5.3.4 Fast Derivation of KLT Kernel for an AR(1) Process

In this section, the fast derivation method of KLT kernel for a discrete AR(1) process is
explained. Moreover, a step-by-step implementation of the technique is presented.

5.3.4.1 Discrete AR(1) Process

In order to define an explicit expression for the discrete KLT kernel of (5.27), first, one must
find N∕2 positive roots of the following two transcendental equations:

tan

(
𝜔

N
2

)
=

1
𝛾

cot
(
𝜔

2

)
, (5.71)

tan

(
𝜔

N
2

)
= −𝛾 tan

(
𝜔

2

)
, (5.72)

as discussed in Section 5.3.3. In both equations, N is the transform size and

𝛾 = (1 + 𝜌)∕(1 − 𝜌), (5.73)

where 𝜌 is the first-order correlation coefficient of the AR(1) process. Roots of (5.71) and (5.72)
correspond to the even and odd indexed eigenvalues and eigenvectors, respectively. Figure 5.3
displays functions tan(𝜔N∕2) and −𝛾 tan(𝜔∕2) for N = 8 and various values of 𝜌. It is apparent
from the figure that for the mth root of (5.72), a suitable choice for the closed path C in (5.31)
is a circle of radius

Rm =
{
𝜋∕2N m ≤ 2
𝜋∕N m > 2

, (5.74)

centered at hm = (m − 1∕4)(2𝜋∕N), where 1 ≤ m ≤ N∕2. It is worth noting that for positively
correlated signals, 0 < 𝜌 < 1, the ratio given in (5.73) is always greater than 1, 𝛾 > 1. However,
for negatively correlated signals, −1 < 𝜌 < 0, the ratio is between 0 and 1 (i.e., 0 < 𝛾 < 1).
Therefore, for 𝜌 < 0, the last two roots must be smaller than the rest as

Rm =
{

𝜋∕N m < N∕2 − 1
𝜋∕2N m ≥ N∕2 − 1

. (5.75)

Similar to the continuous case, (5.72) is reconfigured and the poles of the following inverse
function are calculated

g(𝜔) =
1

tan(𝜔N∕2) + 𝛾 tan(𝜔∕2)
. (5.76)

By setting 𝜔 = h + Rej𝜃 , the function 𝑤(𝜃) of (5.33) for this case is defined as

𝑤m(𝜃) = g(hm + Rmej𝜃),

=
1

tan
[(

hm + Rmej𝜃
)

N
2

]
+ 𝛾 tan

[(
hm + Rmej𝜃

)
1
2

] , (5.77)
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Figure 5.3 Functions tan(𝜔N∕2) and −𝛾 tan(𝜔∕2) for the AR(1) process with N = 8 and various values
of 𝜌, where 𝜌1 = 0.9, 𝜌2 = 0.6, 𝜌3 = 0.2, and 𝛾i = (1 + 𝜌i)∕(1 − 𝜌i), i = 1, 2, 3.

where 0 ≤ 𝜃 ≤ 2𝜋. Hence, the mth root is located at

𝜔m = hm + Rm

[
∫

2𝜋
0 𝑤m(𝜃)ej2𝜃d𝜃

∫
2𝜋

0 𝑤m(𝜃)ej𝜃d𝜃

]
. (5.78)

The procedure is the same as finding the roots of (5.71) with the exceptions that (5.77) must
be modified as follows:

𝑤m(𝜃) =
1

tan
[(

hm + Rmej𝜃
)

N
2

]
− 1

𝛾
cot

[(
hm + Rmej𝜃

)
1
2

] , (5.79)

and a suitable choice for the closed path C is a circle of radius Rm = 𝜋∕N centered at

hm =
{
(m − 1∕2) (2𝜋∕N) m ≤ 2
(m − 1) (2𝜋∕N) m > 2

, (5.80)

which can be determined by generating a plot similar to the ones in Figures 5.2 and 5.3.
Finally, the steps to derive an explicit KLT kernel of dimension N for an arbitrary discrete

dataset by employing an AR(1) approximation are summarized as follows
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1. Estimate the first-order correlation coefficient of an AR(1) model for the given dataset
{x(n)} as

𝜌 =
Rxx(1)
Rxx(0)

=
E{x(n)x(n + 1)}

E{x(n)x(n)}
, (5.81)

where n is the index of random variables (or discrete-time) and −1 < 𝜌 < 1.
2. Calculate the positive roots {𝜔k} of the polynomial given in (5.29) by substituting (5.77)

and (5.79) into (5.78) for odd and even values of k, respectively, and use the following
indexing:

m =
{

k∕2 + 1 k even
(k + 1) ∕2 k odd

. (5.82)

3. Plug in the values of 𝜌 and {𝜔k} in (5.28) and (5.27) to calculate the eigenvalues 𝜆k and
eigenvectors, respectively.

MATLABTM code for steps 2 and 3 with DFT (FFT) used in solving (5.78) are provided in
(Torun and Akansu, 2013).

The computational cost of deriving KLT matrix for an arbitrary signal source has two distinct
components: the calculation of the first-order correlation coefficient 𝜌 for the given signal
set, and the calculation of the roots {𝜔k} of (5.29) that are plugged in (5.27) to generate the
resulting transform matrix AKLT . The roots {𝜔k} of the transcendental tangent equation (5.29),
calculated by using (5.78), as a function of 𝜌 and for N = 8 are displayed in Figure 5.4.
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Figure 5.4 The roots of the transcendental tangent equation 5.29, {𝜔k}, as a function of 𝜌 for N = 8.
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Figure 5.5 Computation time, in seconds, to calculate AKLT ,DQ and AKLT ,E for an AR(1) process with
𝜌 = 0.95, and different values of N (16 ≤ N ≤ 1024) and L = 256, 512, 1024 (Torun and Akansu, 2013).

The computational cost of generating KLT kernel for the given statistics by using the method
presented in this section (AKLT ,E) is compared with a widely used numerical algorithm called
divide and conquer (D&Q) (Golub and Loan, 1996).

Computation times (in seconds) to generate AKLT ,DQ and AKLT ,E (DFT sizes of
L = 256, 512, 1024) for the case of 𝜌 = 0.95 and 16 ≤ N ≤ 1024 are displayed in Figure 5.5.
Both computations are performed by using one thread on a single processor. The machine used
for the simulations has an Intel® CoreTM i5-520M CPU and 8 GB of RAM. It is displayed in
the figure that the explicit KLT kernel derivation method significantly outperforms the D&Q
algorithm for larger values of N. Furthermore, it has a so-called embarrassingly parallel
nature. Hence, it can be easily computed on multiple threads and processors for any k.
Therefore, by implementing it on a parallel device such as a GPU and FPGA, its speed can be
significantly improved.

5.4 Sparsity of Eigen Subspace

The sparse representation of signals has been of great research interest in signal processing and
other disciplines. KLT has been one of the most popular mathematical tools employed in mul-
tivariate data processing and dimension reduction. The application-specific interpretation of
eigenvectors with eigenvalues and their vector components is often a critical task (Cadima and
Jolliffe, 1995; d’Aspremont et al., 2007; Trendafilov et al., 2003; Zou et al., 2006). Moreover,
small but nonzero loadings (elements) of each principal component (PC) (or eigenvector) bring
implementation cost that is hard to justify in applications such as generation and maintenance
(rebalancing) of eigenportfolios with a large number of financial instruments (d’Aspremont
et al., 2007; Torun et al., 2011). This and other data-intensive applications that utilize loading
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coefficients have motivated researchers to study the sparsity of PCs in eigenanalysis of mea-
sured covariance matrices. Furthermore, unevenness of signal energy distributed among PCs
in eigen subspace is reflected in eigenvalues (coefficient variances) that lead to dimension
reduction. The latter is the very foundation of transform coding successfully used in visual
signal processing and data compression (Akansu and Haddad, 1992; Clarke, 1985; Jayant and
Noll, 1984). Therefore, both dimension reduction and sparsity of basis functions (vectors) are
significant attributes of orthogonal transforms widely utilized in many fields. This recent devel-
opment has paved the way for the development of several popular methods for sparse eigen
subspace. A rate-distortion-based framework to sparse subspaces is presented in this section.
The challenge is to maximize explained variance (eigenvalue) by a minimum number of PCs,
also called energy compaction (dimension reduction), while replacing the less significant sam-
ples (loading coefficients) of basis functions with zero to achieve the desired level of sparsity
(cardinality reduction) in representation.

5.4.1 Overview of Sparsity Methods

We provide an overview of the recent literature on sparsity in this subsection for readers with
more interest on the subject. Regularization methods have been used to make an ill-conditioned
matrix invertible or to prevent overfitting (Bertero and Boccacci, 1998; Engl et al., 1996). More
recently, regularization methods also have been utilized for sparsity. 𝓁0 regularizer leads to a
sparse solution. On the other hand, it makes the optimization problem nonconvex. Eigenfil-
tering is another popular method employed for regularization (Bertero and Boccacci, 1998;
Engl et al., 1996). 𝓁1 regularizer, so-called lasso, is widely used as an approximation (convex
relaxation) of 𝓁0 regularizer (Tibshirani, 1996; Trendafilov et al., 2003). Another 𝓁1-based
method was proposed in (Brodie et al., 2009) for sparse portfolios. SCoTLASS (Trendafilov
et al., 2003) and SPCA (Zou et al., 2006) utilize the 𝓁1 and 𝓁2 regularizers for sparse approx-
imation to PCs, respectively.

The sparse PCA is modeled in (Trendafilov et al., 2003; Zou et al., 2006) as an explained
variance maximization problem where the number of nonzero elements in the PCs is consid-
ered as a basis design constraint. These methods suffer from potentially being stuck in local
minima due to the nonconvex nature of the optimization. A convex relaxation method called
SDP relaxations for sparse PCA (DSPCA) using semidefinite programming (SDP) was pro-
posed to deal with a simpler optimization (d’Aspremont et al., 2007). Empirical performance
results for certain cases indicate that DSPCA may generate sparse PCs that preserve slightly
more explained variance than SCoTLASS (Trendafilov et al., 2003) and SPCA (Zou et al.,
2006) for the same sparsity level. A nonnegative variant of the sparse PCA problem, which
forces the elements of each PC to be nonnegative, is introduced in Zass and Shashua (2006).
Nonnegative sparse PCA (NSPCA) offers competitive performance to SCoTLASS, SPCA,
and DSPCA in terms of explained variance for a given sparsity. However, signs of the PC ele-
ments bear specific information for the applications of interests such as eigenportfolios. Thus,
NSPCA is not applicable for all types of applications. Another lasso-based approach, so-called
sparse PCA via regularized SVD (sPCA–rSVD), is proposed in Shen and Huang (2008). Sim-
ulation results for certain cases show that sPCA–rSVD provides competitive results to SPCA.
A variation of sPCA–rSVD, so-called sparse principal components (SPCs), that utilizes the
penalized matrix decomposition (PMD) is proposed in Witten et al. (2009). PMD that com-
putes the rank K approximation of a given matrix is proposed in Witten et al. (2009). It utilizes
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the lasso penalty for sparsity. Unfortunately, none of these methods result in guaranteed spar-
sity regardless of their prohibitive computational cost. Moreover, the lack of mathematical
framework to measure distortion, or explained variance loss, for a desired sparsity level makes
sparse PCA methods of this kind quite ad hoc and difficult to use. On the other hand, the
simple thresholding technique is easy to implement (Cadima and Jolliffe, 1995). It performs
better than SCoTLASS and slightly worse than SPCA (Zou et al., 2006). Although simple
thresholding is easy to implement, it may cause unexpected distortion levels as variance loss.
Soft thresholding (ST) is another technique that is utilized for sparse representation in Zou
et al., (2006). Certain experiments show that ST offers slightly better performance than simple
thresholding (Zou et al., 2006). Therefore, threshold selection plays a central role in sparsity
performance.

In this section, we present in detail a subspace sparsing framework based on the
rate-distortion theory (Akansu and Haddad, 1992; Berger, 2003; Lloyd, 1982; Max, 1960). It
may be considered as an extension of the simple or soft thresholding method to combine a
sparse representation problem with an optimal quantization method used in the source coding
field (Akansu and Haddad, 1992; Berger, 2003; Cadima and Jolliffe, 1995; Clarke, 1985;
Jayant and Noll, 1984). The method employs a varying-size midtread (zero-zone) probability
density function (pdf)-optimized (Lloyd–Max) quantizer designed for a component histogram
of each eigenvector (or the entire eigenmatrix) to achieve the desired level of distortion
(sparsity) in the subspace with reduced cardinality (Hajnal, 1983; Lloyd, 1982; Max, 1960;
Sriperumbudur et al., 2009). Herein, we focus specifically on eigen subspace of a discrete
AR(1) process with closed–form expressions for its eigenvectors and eigenvalues as derived
earlier in the chapter. It is known that the AR(1) process approximates well many real-world
signals (Akansu and Haddad, 1992). We also sparse eigenportfolios of the NASDAQ-100
index by using this method. Note that the method to sparse a subspace through quantization
of its basis functions is a marked departure from the traditional transform coding where
transform coefficients, in the subspace, are quantized for dimension reduction (Akansu and
Haddad, 1992; Clarke, 1985; Jayant and Noll, 1984). Therefore, we investigate the trade-off
between subspace orthogonality and sparsity from a rate-distortion perspective. Then, we
provide a comparative performance of the presented method along with the various methods
reported in the literature, such as ST (Zou et al., 2006), SPCA (Zou et al., 2006), DSPCA
(d’Aspremont et al., 2007), and SPC (Witten et al., 2009), with respect to the metrics of
nonsparsity (NS) and variance loss (VL).

5.4.2 pdf-Optimized Midtread Quantizer

Quantizers may be categorized as midrise and midtread (Jayant and Noll, 1984). A midtread
quantizer is preferred for applications requiring entropy reduction and noise filtering (or spar-
sity) simultaneously (Gonzales and Akansu, 1997). In this section, we utilize a midtread type
to quantize basis function (vector) samples (components) of a transform (subspace) to achieve
sparse representation in the signal domain.

A celebrated design method to calculate optimum intervals (bins) and representation
(quanta) values of a quantizer for the given input signal pdf, a so-called pdf-optimized
quantizer, was independently proposed by Max and Lloyd (Lloyd, 1982; Max, 1960). It
assumes a random information source X with zero-mean and a known pdf function p(x). Then,
it minimizes quantization error in the mean squared error (mse) sense and also makes sure
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that all bins of a quantizer have the same level of error. The quantization error of an L-bin
pdf-optimized quantizer is expressed as follows:

𝜎
2
q =

L∑
k=1

∫

xk+1

xk

(x − yk)2p(x)dx, (5.83)

where quantizer bin intervals, xk, and quanta values, yk, are calculated iteratively. The
necessary conditions for an mse-based pdf-optimized quantizer are given as (Lloyd, 1982;
Max, 1960):

𝜕𝜎
2
q

𝜕xk
= 0; k = 2, 3,… ,L,

𝜕𝜎
2
q

𝜕yk
= 0; k = 1, 2, 3,… ,L, (5.84)

leading to the optimal unequal intervals and resulting quanta values as

xk,opt =
1
2
(yk,opt + yk−1,opt); k = 2, 3,… ,L, (5.85)

yk,opt =
∫

xk+1,opt
xk

xp(x)dx

∫
xk+1,opt

xk
p(x)dx

; k = 1, 2,… ,L, (5.86)

where x1,opt = −∞ and xL+1,opt = ∞. A sufficient condition to avoid local optimum in (5.84)
is the log-concavity of the pdf function p(x). The log-concave property holds for uniform,
Gaussian, and Laplacian pdf types (Jayant and Noll, 1984). The representation point (quan-
tum) of a bin in such a quantizer is its centroid that minimizes the quantization noise for the
interval. We are interested in pdf-optimized quantizers with an adjustable zero-zone, odd L,
or midtread quantizer, to sparse (quantize) eigenvectors of an eigen subspace. One can adjust
zero-zone(s) of the quantizer(s) to achieve the desired level of sparsity in a transform matrix
with the trade-off of resulting imperfectness in orthogonality and explained variance. We will
present design examples by using the presented technique to sparse subspaces in Section 5.4.3.

The discrepancy between input and output of a quantizer is measured by the signal-
to-quantization-noise ratio (SQNR) (Berger, 2003)

SQNR(dB) = 10log10

(
𝜎

2
x

𝜎
2
q

)
, (5.87)

where 𝜎
2
x is the variance of an input with zero-mean and known pdf type, and is expressed as

𝜎
2
x =

∫

∞

−∞
x2p(x)dx. (5.88)

The first-order entropy (rate) of the output for an L-level quantizer with such an input is cal-
culated as (Berger, 2003; Brusewitz, 1986)

H = −
L∑

k=1

Pklog2 Pk, (5.89)
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Pk =
∫

xk+1

xk

p(x)dx.

Rate-distortion theory states that the quantization error variance is expressed as (Berger,
2003):

𝜎
2
q = f (R)𝜎2

x , (5.90)

where f (R) = 𝛾2−2R and the number of quantizer levels found as L = 2R. The parameter 𝛾 , also
called the fudge factor, depends on the pdf type of the information source.

The optimum allocation of the total bits Ramong multiple information sources (transform
coefficients in transform coding (TC)) is an important task in lossy compression. Transform
coefficient variances 𝜎2

k (or eigenvalues 𝜆k) are quite uneven to achieve dimension reduction
in TC. Therefore, an optimum bit allocation algorithm assigns bit rate Rk for quantization of
coefficient 𝜃k in such a way that the resulting quantization errors for all coefficients are forced
to be equal, 𝜎2

q0
= 𝜎

2
q1

= … = 𝜎
2
qN−1

(Akansu and Haddad, 1992). The number of levels for
the kth quantizer, for coefficient 𝜃k, is found as Lk = 2Rk . Optimally allocated bits Rk among
multiple sources for the total bit budget R,with the assumption that all sources have the same
pdf type, are calculated as (Akansu and Haddad, 1992)

Rk = R +
1
2

log2

𝜎
2
k(∏N−1

i=0 𝜎
2
i

) 1
N

, (5.91)

where R =
∑N−1

k=0 Rk.

5.4.3 Quantization of Eigen Subspace

In TC, sparsity in transform coefficients is desired. In contrast, any sparse transform including
KLT aims to sparse subspace (transform matrix) where basis vector components are interpreted
as loading coefficients in some applications (Akansu and Torun, 2012; Bollen and Whaley,
2009; Choi and Varian, 2012; Mamaysky et al., 2008; Ohlson and Rosenberg, 1982; Torun and
Akansu, 2013). Quantization of a given subspace with an optimally designed single quantizer,
Q, or a set of quantizers {Qk}, is defined as

Φ̂ = Q(Φ). (5.92)

In this case, Q is a pdf-optimized midtread quantizer designed for the entire transform matrix.
Then, transform coefficients are obtained by using the quantized matrix

̂𝜽 = Φ̂x. (5.93)

Unlike in TC, coefficients are not quantized in sparse representation methods. Instead, trans-
form coefficients of the quantized subspace for a given signal vector are obtained. As in TC,
quantization error equals to reconstruction error, both in mse. Mean-squared quantization error
is expressed as

𝜎
2
q,S =

1

N2

N−1∑
k=0

𝜙k
T
𝜙k, (5.94)

where 𝜙k = 𝜙k − 𝜙k.
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5.4.4 pdf of Eigenvector

We model the probability density of eigenvector components in order to design pdf-optimized
quantizers to sparse them. Each eigenvector of an AR(1) process is generated by a sinusoidal
function as expressed in (5.27). The pdf, with arbitrary support, of a continuous sinusoidal
function is modeled as (Balakrishnan and Nevzorov, 2004; Hejn et al., 1998):

p(x) =
1

𝜋

√
(x − a) (b − x)

, (5.95)

where a and b define the support, a ≤ x ≤ b. The cumulative distribution function (cdf) of such
a function type is of arcsine distribution and expressed as

P(x) =
2
𝜋

arcsin

(√
x − a
b − a

)
. (5.96)

Mean and variance of the arcsine distribution are calculated as

𝜇 =
a + b

2
, (5.97)

𝜎
2 =

(b − a)2

8
. (5.98)

The pdf of arcsine distribution is symmetric and U-shaped. The arcsine distribution with
a = 0 and b = 1, namely standard arcsine distribution, is a special case of the beta distribu-
tion with the parameters 𝛼 = 𝛽 = 0.5. Figure 5.6 shows the pdf of arcsine distribution with
parameters a = −0.0854 and b = 0.0854. Log-concavity of a pdf p(x) is the sufficient condi-
tion for the uniqueness of a pdf-optimized quantizer. However, arcsine distribution type has the
log-convex property (Bagnoli and Bergstrom, 2005). It is stated in Yee (2010) that for exponen-
tial sources and the sources with strictly log convex pdfs, the quantizer intervals (bins) and their
bin representation (quanta) values are globally optimum and unique. Therefore, pdf-optimized
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Figure 5.6 Probability density function of arcsine distribution for a = −0.0854 and b = 0.0854. Load-
ings of a second PC for an AR(1) signal source with 𝜌 = 0.9 and N = 256 are fitted to arcsine distribution
by finding minimum and maximum values in the PC.
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quantizers can be designed for arcsine distribution (Lloyd, 1982; Max, 1960). The second prin-
cipal component, 𝜙1, of an AR(1) source for 𝜌 = 0.9 and size of N = 256 is shown to be fit
by arcsine distribution with a = min(𝜙1) and b = max(𝜙1), respectively. Minimum and max-
imum valued components of the kth eigenvector depend on 𝜌, 𝜔k, and N as stated in (5.27).
In order to maintain equal distortion levels among quantizers to sparse eigenvectors, we cal-
culated optimal intervals for zero-zones of pdf-optimized midtread quantizers. Thus, most of
the small valued eigenvector components are likely to be quantized as zero.

Figure 5.7a and Figure 5.7b display the normalized histograms of the first and second eigen-
vector components (PC1 and PC2 loading coefficients) for an AR(1) process with 𝜌 = 0.9 and
N = 1024. The value of N is selected large enough to generate proper histograms. The intervals
of the histograms, Δk, are set as

Δk =
max(𝜙k) − min(𝜙k)

N
, (5.99)
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Figure 5.7 Normalized histograms of (a) PC1 and (b) PC2 loadings for an AR(1) signal source with
𝜌 = 0.9 and N = 1024. The dashed lines in each histogram show the probability that is calculated by
integrating an arcsine pdf for each bin interval.
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Figure 5.8 Rate (bits)-distortion (SQNR) performance of zero mean and unit variance arcsine
pdf-optimized quantizer for L = 65 bins. The distortion level is increased by combining multiple bins
around zero in a larger zero-zone.

where 𝜙k is the kth eigenvector. The dashed lines in each normalized histogram show the
probability that is calculated by integrating the pdf of arcsine distribution in (5.95) for each
bin interval. The histogram displayed in Figure 5.7a has only one side of the arcsine pdf, as
expected from (5.27). In contrast, Figure 5.7b displays the histogram with a complete arcsine
pdf shape. These figures confirm the arcsine distribution type for eigenvector components of
an AR(1) process.

Now, we investigate the rate-distortion performance of an arcsine pdf-optimized zero-zone
quantizer. Rate of quantizer output is calculated by using first-order entropy as defined in
(5.89). Distortion caused by the quantizer is calculated in mse and represented in SQNR as
defined in (5.87). Figure 5.8 displays rate-distortion performance of such a quantizer with
L = 65. In this figure, distortion level is increased by increasing the zero-zone of the quantizer
for more sparsity where rate decreases accordingly. One can design a quantizer with zero-zone
for each eigenvector (PC) or for the entire eigenmatrix to achieve the desired level of matrix
sparsity (Lloyd, 1982; Max, 1960).

5.4.5 Sparse KLT Method

In this subsection, we present in detail a simple method to sparse eigen subspace for an AR(1)
process through a design example. The relevant parameter values for the sparse KLT (SKLT)
example considered are tabulated in Table 5.1. The steps of design are summarized as follows.

1. First-order correlation coefficient 𝜌 is calculated from the available dataset as described in
(5.81), and Rx is constructed. Assume that 𝜌 = 0.9 for the given example with N = 256.

2. Eigenvalues {𝜆k} and corresponding eigenvectors {𝜙k} of Rx are calculated from (5.28) and
(5.27), respectively. Eigenvalues of the first 16 eigenvectors (PCs) are listed in Table 5.1.
These eigenvectors explain 68.28% of the total variance. Values of {𝜔k} used to calcu-
late each eigenvalue and corresponding eigenvector are also shown in Table 5.1. Note that
𝜂E(L) of (5.24) and the explained variance used in Table 5.1 measure energy compaction
efficiency of a subspace.
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3. PC loading coefficients (eigenvector components) are fitted to arcsine distribution by calcu-
lating {ak = min(𝜙k)}∀k and {bk = max(𝜙k)}∀k. Then, variances

{
𝜎

2
k = (bk−ak)2

8

}
∀k, are

calculated by using (5.98). Table 5.1 also tabulates {ak}, {bk}, and {𝜎2
k} of eigenvectors.

4. For a given total rate R (desired level of sparsity), {Rk} are calculated by plugging {𝜎2
k}

in the optimum bit allocation equation given in (5.91). Then, quantizer levels {Lk} are
calculated as {Lk = 2Rk}∀k and rounded up to the closest odd integer number. R is the
sparsity tuning parameter of SKLT. As in all of the sparse PCA methods, R for a given
sparsity has to be determined with cross-validation. Table 5.1 displays calculated rates and
quantizer levels for the total rate of R = 5.7.

5. For this design example, a L = 65 level pdf-optimized zero-zone quantizer of arcsine distri-
bution with zero mean and unit variance is used as the starting point. Then, several adjacent
bins around zero are combined to adjust the zero-zone for the desired sparsity level. For
the kth eigenvector, a predesigned L = 65 level pdf-optimized the zero-zone quantizer is
converted to an Lk ≤ L level zero-zone quantizer.

6. PC loadings (eigenvector components) are normalized to have zero mean and unit vari-
ance,

{
𝜙k =

(𝜙k−mean(𝜙k))
std(𝜙k)

}
∀k, where mean and std are the mean and standard deviation

of eigenvector components, respectively. Quantized (sparsed) eigenvectors are generated
by applying quantization on eigenvectors of the original eigen subspace {𝜙k = Qk(𝜙k)}∀k.
The number of zero components or sparsity level (S) of quantized PCs for this example are
also given in Table 5.1.

Remark 5.1 The number of bins for a predesigned pdf-optimized quantizer is selected based
on the quantization noise and implementation cost. The increase in signal-to-quantization
noise (SQNR) of a pdf-optimized zero-zone quantizer optimized for arcsine pdf with L > 65
is found not to be that significant.

Table 5.1 Relevant parameter values of SKLT example for the first 16 PCs of an AR(1) source with
𝜌 = 0.9 and N = 256. They explain 68.28% of the total variance.

𝜔 𝜆 a b 𝜎
2 R L S

PC1 0.0114 18.77 −0.0853 0.0853 0.0036 5.6546 51 26
PC2 0.0229 18.14 −0.0853 0.0853 0.0036 5.6563 51 28
PC3 0.0344 17.17 −0.0856 0.0856 0.0037 5.6588 51 40
PC4 0.0459 15.97 −0.0857 0.0857 0.0037 5.6620 51 34
PC5 0.0575 14.64 −0.0860 0.0860 0.0037 5.6655 51 36
PC6 0.0691 13.29 −0.0862 0.0862 0.0037 5.6691 51 38
PC7 0.0808 11.97 −0.0864 0.0864 0.0037 5.6725 51 42
PC8 0.0925 10.73 −0.0866 0.0866 0.0037 5.6754 51 42
PC9 0.1043 9.60 −0.0868 0.0868 0.0038 5.6790 51 40
PC10 0.1162 8.58 −0.0869 0.0869 0.0038 5.6819 51 36
PC11 0.1281 7.67 −0.0871 0.0870 0.0038 5.6835 51 44
PC12 0.1400 6.88 −0.0872 0.0872 0.0038 5.6866 53 36
PC13 0.1520 6.17 −0.0873 0.0873 0.0038 5.6881 53 36
PC14 0.1640 5.56 −0.0874 0.0874 0.0038 5.6902 53 36
PC15 0.1760 5.02 −0.0875 0.0875 0.0038 5.6915 53 36
PC16 0.1881 4.55 −0.0876 0.0876 0.0038 5.6930 53 36
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Figure 5.9 Orthogonality imperfectness-rate (sparsity) trade-off for sparse eigen subspaces of three
AR(1) sources with N = 256.

Sparsity achieved by quantization of PCs leads to orthogonality imperfectness. We present
orthogonality imperfectness 𝜖 in mse with respect to allowable total rate R (desired sparsity
level) for various AR(1) sources defined as

𝜖 =
1

N2

N−1∑
i=0

N−1∑
i=0

[I(i, j) − K(i, j)]2, (5.100)

where I is the N × N identity matrix; and K = AA∗T.
Figure 5.9 displays the trade-off between subspace sparsity and loss of orthogonality for

various AR(1) sources and N = 256. It is observed from Figure 5.9 that the orthogonality
imperfectness decreases almost linearly with increasing R, as expected.

5.4.6 Sparsity Performance

Let us compare performances of the presented SKLT method with the ST (Zou et al., 2006),
SPCA (Zou et al., 2006), DSPCA (d’Aspremont et al., 2007), and SPC (d’Aspremont et al.,
2007) methods for the AR(1) process, and also for an empirical correlation matrix of stock
returns in the NASDAQ-100 index in this subsection. In order to provide a fair comparison,
sparsity levels of all methods considered here are tuned in such a way that compared PCs
have almost the same number of nonzero components. In most cases, the number of nonzero
components of each PC in the SKLT method are kept slightly lower than the others in order
to show the method’s merit under mildly disadvantageous test conditions.

5.4.6.1 Eigen Subspace Sparsity for the AR(1) Process

The sparsity imposed on PCs may degrade the explained variance described in d’Aspremont
et al. (2007). The explained variances of the PCs are calculated as {𝜆k = 𝜎

2
k = 𝜙

T
k Rx𝜙k}∀k,

where 𝜙k is the kth eigenvector for a given Rx. For the sparsed PCs, new explained
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variances (eigenvalues) are calculated as
{
𝜆k = ̂

𝜎
2
k
= 𝜙k

T
Rx𝜙k

}
∀k, where 𝜙k is the kth sparse

eigenvector. Then, the percentage of explained variance loss (VL) as a performance metric is

defined as
{

Vk =
(𝜆k−𝜆k)

𝜆k
× 100

}
∀k. Similarly, the cumulative explained variance loss of first

L PCs is defined as CL =
∑N

k=1 𝜆k −
∑L

k=1 𝜆k. In addition, we also used a nonsparsity (NS)
performance metric for comparison. It is defined as the percentage of nonzero components in
a given sparsed eigenvector. Thus, the performance is measured as the variance loss for the
given NS level (d’Aspremont et al., 2007; Zou and Hastie, 2005; Zou et al., 2006). We are
unable to provide their comparative rate-distortion performance due to the lack of models to
generate sparse PCs for all methods reported here.

Figure 5.10a displays the VL measurements of sparsed first PCs generated by SKLT, SPCA,
SPC, ST, and DSPCA methods with respect to NS for an AR(1) source with 𝜌 = 0.9 and
N = 256. For SKLT, an L = 65 level quantizer optimized for arcsine pdf with zero mean and
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Figure 5.10 (a) Variance loss (VL) measurements of sparsed first PCs generated by SKLT, SPCA,
SPC, ST, and DSPCA methods with respect to nonsparsity (NS) for an AR(1) source with 𝜌 = 0.9 and
N = 256; (b) NS and VL measurements of sparsed eigenvectors for an AR(1) source with 𝜌 = 0.9 and
N = 256 generated by the SKLT method and SPCA algorithm.
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unit variance is used as the initial quantizer. The zero-zone width of the initial quantizer is
adjusted for required sparsity, as explained in this chapter. Then, the generated quantizer is
employed. Figure 5.10a shows that SKLT offers less variance loss than the other methods.
SPCA provides competitive performance to SKLT. Figure 5.10b displays NS and VL per-
formance comparisons of sparse PCs generated by SKLT and by SPCA for the same AR(1)
process. The original eigenvectors that explain 90% of the total variance are selected for spar-
sity comparison. Figure 5.10b shows that the VL performance of SKLT is slightly better than
that of SPCA. Note that the NS of SKLT is slightly lower than that of SPCA in this comparison.

5.4.6.2 Eigen Subspace Sparsity for the NASDAQ-100 Index

We present an example to sparse an eigen subspace that leads to the creation of the correspond-
ing sparse eigenportfolios (Akansu and Torun, 2015). Eigendecomposition of empirical cor-
relation matrices is a popular mathematical tool in finance employed for various tasks includ-
ing eigenfiltering of measurement noise and creation of eigenportfolios for baskets of stocks
(Akansu and Torun, 2012; Markowitz, 1959; Torun et al., 2011). An empirical correlation
matrix for the end-of-day (EOD) stock returns for the NASDAQ-100 index with W = 30-day
time window ending on April 9, 2014, is measured (Torun et al., 2011). The vector of 100
stock returns in the NASDAQ-100 index at time n is created as (Akansu and Torun, 2012):

r(n) = [rk(n)]; k = 1, 2,… , 100. (5.101)

The empirical correlation matrix of returns at time n is expressed as

RE(n) ≜ [E{r(n)rT (n)}] = [Rk,l(n)], (5.102)

=
⎡⎢⎢⎢⎣

R1,1(n) R1,2(n) … R1,100(n)
R2,1(n) R2,2(n) … R2,100(n)

⋮ ⋮ ⋱ ⋮
R100,1(n) R100,2(n) … R100,100(n)

⎤⎥⎥⎥⎦ ,
where the matrix elements

Rk,l(n) = E{rk(n)rl(n)} =
1
W

W−1∑
m=0

rk(n − m)rl(n − m)

represent measured pairwise correlations for an observation window of W samples. The returns
are normalized to be zero mean and unit variance, and RE(n) is a real, symmetric, and positive
definite matrix. Now, we introduce eigendecomposition of RE as follows:

RE(n) = AT
KLT𝚲AKLT =

N∑
k=1

𝜆k𝝓k𝝓
T
k , (5.103)

where {𝜆k,𝝓k} are eigenvalue–eigenvector pairs (Akansu and Torun, 2012).
The component values of eigenvector {𝝓k} are repurposed as the capital allocation coeffi-

cients to create the kth eigenportfolio for a group of stocks where the resulting coefficients {𝜃k}
are pairwise uncorrelated. These coefficients represent eigenportfolio returns. Eigenportfolios
are used in various investment and trading strategies (Chamberlain and Rothschild, 1983). It is
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Figure 5.11 Normalized histogram of eigenmatrix elements for an empirical correlation matrix of
end-of-day (EOD) returns for 100 stocks in the NASDAQ-100 index. W = 30-day measurement window
ending on April 9, 2014.
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Figure 5.12 VL measurements of sparsed first PCs generated by SKLT, SPCA, SPC, ST, and DSPCA
methods with respect to NS for an empirical correlation matrix of EOD returns for 100 stocks in the
NASDAQ-100 index with W = 30-day measurement window ending on April 9, 2014.

required to buy and sell certain stocks in the amounts defined by the loading (capital allocation)
coefficients in order to build and rebalance eigenportfolios in time for the targeted risk levels.
Some of the loading coefficients may have relatively small values where their trading cost
becomes a practical concern for portfolio managers. Therefore, sparsing eigen subspace of an
empirical correlation matrix RE(n)may offer cost reductions in desired trading activity. In con-
trast, although theoretically appealing, the optimization algorithms like SPCA, DSPCA, and
SPC with constraints for forced sparsity (cardinality reduction of a set) may substantially alter
intrinsic structures of original eigenportfolios. Therefore, such a sparse representation might
cause a significant deviation from the measured empirical correlation matrix. Hence, the use
of eigenportfolios generated by a sparsity-constrained optimization in a trading strategy may
lead to poor performance.



�

� �

�

Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process 95

10

12

14

16

18

20

22
C

u
m

u
la

ti
ve

 v
ar

ia
n

ce
 lo

ss
 (

%
)

0 5 10 15

(a)

20 25 30

Day index

0 5 10 15

(b)

20 25 30

Day index

0 5 10 15

(c)

20 25 30

Day index

KLT

SKLT

SPCA

ST

10

15

20

25

C
u

m
u

la
ti

ve
 v

ar
ia

n
ce

 lo
ss

 (
%

)

KLT

SKLT

SPCA

ST

10

15

20

25

30

C
u

m
u

la
ti

ve
 v

ar
ia

n
ce

 lo
ss

 (
%

)

KLT

SKLT

SPCA

ST

Figure 5.13 Cumulative explained variance loss with L = 16 generated daily from an empirical correla-
tion matrix of EOD returns between April 9, 2014, and May 22, 2014, for 100 stocks in the NASDAQ-100
index by using KLT, SKLT, SPCA, and ST methods. NS levels of 85%, 80%, and 75% for all PCs are
forced in (a), (b), and (c), respectively, using W = 30 days.



�

� �

�

96 Financial Signal Processing and Machine Learning

0 5 10 15

(a)

20 25 30
5

10

15

20

25

30
d

R
d

A

Day index

0 5 10 15

(b)

20 25 30

Day index

0

0.5

1

1.5

2

2.5

SKLT
SPCA
ST

SKLT
SPCA
ST

Figure 5.14 (a) dR and (b) dA of sparse eigen subspaces generated daily from an empirical correlation
matrix of EOD returns between April 9, 2014, and May 22, 2014, for 100 stocks in the NASDAQ-100
index by using SKLT, SPCA, and ST methods, respectively. NS level of 85% for all PCs is forced with
W = 30 days.

For simplicity, a single quantizer in the SKLT method is utilized to sparse the entire eigen-
matrix AKLT. It is optimized for the histogram of its elements as displayed in Figure 5.11. It is
observed to be a Gaussian pdf. Figure 5.12 displays the VL measurements of sparsed first PCs
generated by SKLT, SPCA, SPC, ST, and DSPCA methods with respect to NS. It is shown
that SKLT offers less variance loss than other methods considered in this chapter. Figure 5.13
displays the cumulative explained variance loss with L = 16 generated daily from an empirical
correlation matrix of EOD returns between April 9, 2014, and May 22, 2014, for 100 stocks
in the NASDAQ-100 index by using KLT, SKLT, SPCA, and ST methods. The measurement
window of the last 30 days, W = 30, is used. NS levels of 85%, 80%, and 75% for each PC are
forced in experiments as displayed in Figure 5.13a, Figure 5.13b, and Figure 5.13c, respec-
tively. The SKLT method consistently outperforms the others for this time-varying scenario.
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The difference between the original RE(n) and the modified correlation matrix ̂RE(n) due
to sparsed eigenvectors is defined as

dR = ‖‖‖RE(n) − ̂RE(n)
‖‖‖2
, (5.104)

where ‖.‖2 is the norm-2 of a matrix. Hence, the distance between the original and the sparsed
eigenmatrices is expressed as

dA = ‖‖‖AKLT − ̂AKLT
‖‖‖2
. (5.105)

Figure 5.14a and Figure 5.14b display the dR and dA of sparse eigen subspaces generated
daily from an empirical correlation matrix of EOD returns between April 9, 2014, and May
22, 2014, for 100 stocks in the NASDAQ-100 index by using SKLT, SPCA, and ST methods,
respectively. The NS level of 85% for all PCs is forced with W = 30 days. These performance
measures highlight that the SKLT method sparses eigen subspace of the NASDAQ-100 index
better than the SPCA and ST methods. Moreover, the SKLT does not force an alteration of the
actual covariance structure like other methods.

5.5 Conclusions

Closed-form expressions for KLT kernel (eigenvectors) and corresponding transform coeffi-
cient variances (eigenvalues) of the AR(1) process were reported in the literature (Ray and
Driver, 1970). However, they require solving a transcendental tangent equation (5.29). Math-
ematical steps leading to equations (5.27), (5.28), and (5.29) are discussed in detail, following
the methodology used for a continuous stochastic process with exponential autocorrelation
function (Davenport and Root, 1958; Pugachev, 1959a,b; Wilkinson, 1965). Then, a simple
and fast method to find the roots of a transcendental equation is employed to derive the roots
of (5.29) explicitly. That derivation made it possible to express the N × N KLT kernel and
corresponding coefficient variances in explicit form, leading to extremely fast KLT imple-
mentations for processes that can be modeled with AR(1) process. The technique is shown to
be more efficient than the D&Q algorithm (Golub and Loan, 1996).

The constrained optimization algorithms to generate sparse PCs do not guarantee a good
performance for an arbitrary covariance matrix due to the nonconvex nature of the problem.
The SKLT method to sparse subspaces is presented in this chapter. It utilizes the mathematical
framework developed for transform coding in rate-distortion theory. The sparsity performance
comparisons demonstrate the superiority of SKLT over the popular algorithms known in the
literature.
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6.1 Introduction

Large covariance and precision (inverse covariance) matrix estimations have become funda-
mental problems in multivariate analysis that find applications in many fields, ranging from
economics and finance to biology, social networks, and health sciences. When the dimen-
sion of the covariance matrix is large, the estimation problem is generally challenging. It is
well-known that the sample covariance based on the observed data is singular when the dimen-
sion is larger than the sample size. In addition, the aggregation of a huge amount of estimation
errors can make considerable adverse impacts on the estimation’s accuracy. Therefore, estimat-
ing large covariance and precision matrices has attracted rapidly growing research attention
in the past decade. Many regularized methods have been developed: see Bickel and Levina
(2008), El Karoui (2008), Friedman et al. (2008), Fryzlewicz (2013), Han et al. (2012), Lam
and Fan (2009), Ledoit and Wolf (2003), Pourahmadi (2013), Ravikumar et al., (2011b), Xue
and Zou (2012), among others.

One of the commonly used approaches to estimating large matrices is to assume the covari-
ance matrix to be sparse, that is, many off-diagonal components are either zero or nearly so.
This effectively reduces the total number of parameters to estimate. However, such a sparsity
assumption is restrictive in many applications. For example, financial returns depend on the
common risk factors, housing prices depend on the economic health, and gene expressions can
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be stimulated by cytokines. Moreover, in many applications, it is more natural to assume that
the precision matrix is sparse instead (e.g., in Gaussian graphical models).

In this chapter, we introduce several recent developments for estimating large covariance
and precision matrices without assuming the covariance matrix to be sparse. One of the
selected approaches assumes the precision matrix to be sparse and applies column-wise
penalization for estimations. This method efficiently estimates the precision matrix in
Gaussian graphical models. The other method is based on high-dimensional factor analysis.
Both methods will be discussed in Sections 6.2 and 6.3, and are computationally more
efficient than the existing ones based on penalized maximum likelihood estimation. We
present several applications of these methods, including graph estimation for gene expression
data, and several financial applications. In particular, we shall see that estimating covariance
matrices of high-dimensional asset excess returns plays a central role in applications of
portfolio allocations and in risk management.

In Section 6.4, we provide a detailed description of the so-called factor pricing model, which
is one of the most fundamental results in finance. It postulates how financial returns are related
to market risks, and has many important practical applications, including portfolio selection,
fund performance evaluation, and corporate budgeting. In the model, the excess returns can
be represented by a factor model. We shall also study a problem of testing “mean–variance
efficiency.” In such a testing problem, most of the existing methods are based on the Wald
statistic, which has two main difficulties when the number of assets is large. First, the Wald
statistic depends on estimating a large inverse covariance matrix, which is a challenging prob-
lem in a data-rich environment. Second, it suffers from a lower power in a high-dimensional,
low-sample-size situation. To address the problem, we introduce a new test, called the power
enhancement test, which aims to enhance the power of the usual Wald test.

In Section 6.5, we will present recent developments of efficient estimations in panel
data models. As we shall illustrate, the usual principal components method for estimat-
ing the factor models is not statistically efficient since it treats the idiosyncratic errors
as both cross-sectionally independent and homoscedastic. In contrast, using a consistent
high-dimensional precision covariance estimator can potentially improve the estimation
efficiency. We shall conclude in Section 6.6.

Throughout the chapter, we shall use ‖A‖2 and ‖A‖F as the operator and Frobenius norms
of a matrix A. We use ‖v‖ to denote the Euclidean norm of a vector v.

6.2 Covariance Estimation via Factor Analysis

Suppose we observe a set of stationary data {Yt}T
t=1, where each Yt = (Y1t, · · · ,YN,t)′ is a

high-dimensional vector; here, T and N respectively denote the sample size and the dimension.
We aim to estimate the covariance matrix of Yt: 𝚺 = Cov(Yt), and its inverse 𝚺−1, which
are assumed to be independent of t. This section introduces a method of estimating 𝚺 and
its inverse via factor analysis. In many applications, the cross-sectional units often depend
on a few common factors. Fan et al. (2008) tackled the covariance estimation problem by
considering the following factor model:

Yit = b′
i f t + uit. (6.1)

where Yit is the observed response for the ith (i = 1,… ,N) individual at time t = 1,… ,T; bi
is a vector of factor loadings; f t is a K × 1 vector of common factors; and uit is the error term,
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usually called idiosyncratic component, uncorrelated with f t. In fact, factor analysis has long
been employed in financial studies, where Yit often represents the excess returns of the ith asset
(or stock) on time t. The literature includes, for instance, Campbell et al. (1997), Chamberlain
and Rothschild (1983), Fama and French (1992). It is also commonly used in macroeconomics
for forecasting diffusion indices (e.g., Stock and Watson, (2002).

The factor model (6.1) can be put in a matrix form as

Yt = Bf t + ut. (6.2)

where B = (b1,… ,bN)′ and ut = (u1t,… , uNt)′. We are interested in 𝚺, the N × N covariance
matrix of Yt, and its inverse 𝚯 = 𝚺−1, which are assumed to be time-invariant. Under model
(6.1), 𝚺 is given by

𝚺 = BCov(f t)B′ + 𝚺u, (6.3)

where 𝚺u = (𝜎u,ij)N×N is the covariance matrix of ut. Estimating the covariance matrix 𝚺u of
the idiosyncratic components {ut} is also important for statistical inferences. For example, it
is needed for large sample inference of the unknown factors and their loadings and for testing
the capital asset pricing model (Sentana, 2009).

In the decomposition (6.3), it is natural to consider the conditional sparsity: given the com-
mon factors, most of the remaining outcomes are mutually weakly correlated. This gives rise
to the approximate factor model (e.g., Chamberlain and Rothschild, 1983), in which 𝚺u is a
sparse covariance but not necessarily diagonal, and for some q ∈ [0, 1),

mN = max
i≤N

∑
j≤N

|𝜎u,ij|q (6.4)

does not grow too fast as N → ∞. When q = 0, mN measures the maximum number of non
zero components in each row.

We would like to emphasize that model (6.3) is related to but different from the problem
recently studied in the literature on “low-rank plus sparse representation”. In fact, the “low
rank plus sparse” representation of (6.3) holds on the population covariance matrix, whereas
the model considered by Candès et al. (2011) and Chandrasekaran et al. (2010) considered
such a representation on the data matrix. As there is no 𝚺 to estimate, their goal is limited
to producing a low-rank plus sparse matrix decomposition of the data matrix, which corre-
sponds to the identifiability issue of our study, and does not involve estimation or inference.
In contrast, our ultimate goal is to estimate the population covariance matrices as well as the
precision matrices. Our consistency result on 𝚺u demonstrates that the decomposition (6.3)
is identifiable, and hence our results also shed the light of the “surprising phenomenon” of
Candès et al. (2011) that one can separate fully a sparse matrix from a low-rank matrix when
only the sum of these two components is available.

Moreover, note that in financial applications, the common factors f t are sometimes known,
as in Fama and French (1992). In other applications, however, the common factors may be
unknown and need to be inferred. Interestingly, asymptotic analysis shows that as the dimen-
sionality grows fast enough (relative to the sample size), the effect of estimating the unknown
factors is negligible, and the covariance matrices of Yt and ut and their inverses can be esti-
mated as if the factors were known (Fan et al., 2013).

We now divide our discussions into two cases: models with known factors and models with
unknown factors.
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6.2.1 Known Factors

When the factors are observable, one can estimate B by the ordinary least squares (OLS):
̂B = ( ̂b1,… ,

̂bN)′, where,

̂bi = argmin
bi

1
T

T∑
t=1

(Yit − b′
if t)2, i = 1,… ,N.

The residuals are obtained using the plug-in method: ûit = Yit − ̂b′
if t.

Denote by ût = (û1t,… , ûpt)′. We then construct the residual covariance matrix as:

Su =
1
T

T∑
t=1

ûtû
′
t = (su,ij).

Now we apply thresholding on Su. Define

̂𝚺u = (�̂�ij)p×p, �̂�
T
ij =

{
su,ii, i = j;

th(su,ij)I(|su,ij| ≥ 𝜏ij), i ≠ j.
(6.5)

where th(⋅) is a generalized shrinkage function of Antoniadis and Fan (2001), employed by
Rothman et al. (2009) and Cai and Liu (2011), and 𝜏ij > 0 is an entry-dependent threshold. In
particular, the hard-thresholding rule th(x) = xI(|x| ≥ 𝜏ij) (Bickel and Levina, 2008) and the
constant thresholding parameter 𝜏ij = 𝛿 are allowed. In practice, it is more desirable to have
𝜏ij be entry-adaptive. An example of the threshold is

𝜏ij = 𝜔T (su,iisu,jj)1∕2
, for a given𝜔T > 0 (6.6)

This corresponds to applying the thresholding with parameter 𝜔T to the correlation matrix of
Su. Cai and Liu (2011) discussed an alternative type of “adaptive threshold.” Moreover, we
take 𝜔T to be: some C > 0,

𝜔T = C

√
log N

T
,

which is a proper threshold level to overrides the estimation errors.
The covariance matrix Cov( f t) can be estimated by the sample covariance matrix

̂Cov( f t) = T−1F′F − T−2F′𝟏𝟏′F,

where F′ = ( f 1,… , f T ), and 𝟏 is a T-dimensional column vector of ones. Therefore, we obtain
a substitution estimator (Fan et al., 2011):

̂𝚺 = ̂B̂Cov( f t) ̂B′ + ̂𝚺u. (6.7)

By the Sherman–Morrison–Woodbury formula,

𝚺−1 = 𝚺−1
u − 𝚺−1

u B[Cov( f t)−1 + B′𝚺−1
u B]−1B′𝚺−1

u ,

which is estimated by

̂𝚺−1 = ̂𝚺−1
u − ̂𝚺−1

u
̂B[̂Cov( f t)−1 + ̂B′ ̂𝚺−1

u
̂B]−1 ̂B′ ̂𝚺−1

u . (6.8)
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6.2.2 Unknown Factors

When factors are unknown, Fan et al. (2013) proposed a nonparametric estimator of 𝚺 based
on the principal component analysis. Let �̂�1 ≥ �̂�2 ≥ · · · ≥ �̂�N be the ordered eigenvalues of
the sample covariance matrix S of Yt and { ̂𝝃i}N

i=1 be their corresponding eigenvectors. Then
the sample covariance has the following spectral decomposition:

S =
K∑

i=1

�̂�i
̂𝝃i
̂𝝃
′
i + Q,

where Q =
∑N

i=K+1 �̂�i
̂𝝃i
̂𝝃
′
i is called the principal orthogonal complement, and K is the num-

ber of common factors. We can apply thresholding on Q as in (6.5) and (6.6). Denote the
thresholded Q by ̂𝚺u. Note that the threshold value in (6.6) now becomes, for some C > 0

𝜔T = C

(√
log N

T
+

1√
N

)
.

The estimator of 𝚺 is then defined as:

̂𝚺K =
K∑

i=1

�̂�i
̂𝝃i
̂𝝃
′
i + ̂𝚺u. (6.9)

This estimator is called the principal orthogonal complement thresholding (POET) estimator.
It is obtained by thresholding the remaining components of the sample covariance matrix,
after taking out the first K principal components. One of the attractiveness of POET is that it
is optimization-free, and hence is computationally appealing.

The POET (6.9) has an equivalent representation using a constrained least-squares method.
The least-squares method seeks for ̂B = ( ̂b1,… ,

̂bN)′ and ̂F′ = (̂f 1,… ,
̂f T ) such that

( ̂B, ̂F) = arg min
bi∈ℝK

,f t∈ℝK

N∑
i=1

T∑
t=1

(Yit − b′
if t)2, (6.10)

subject to the normalization

1
T

T∑
t=1

f tf
′
t = IK , and

1
N

N∑
i=1

bib
′
i is diagonal. (6.11)

Putting it in a matrix form, the optimization problem can be written as

arg min
B,F

‖Y′ − BF′‖2
F

T−1F′F = IK ,B
′B is diagonal. (6.12)

where Y′ = (Y1,… ,YT ) and F′ = ( f 1, · · · , f T ). For each given F, the least-squares estimator
of B is ̂B = T−1Y′F, using the constraint (6.11) on the factors. Substituting this into (6.12),
the objective function now becomes ‖Y′ − T−1Y′FF′‖2

F = tr[(IT − T−1FF′)YY′]. The mini-

mizer is now clear: the columns of ̂F∕
√

T are the eigenvectors corresponding to the K largest
eigenvalues of the T × T matrix YY′ and ̂B = T−1Y′ ̂F (see e.g., Stock and Watson, 2002). The
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residual is given by ûit = Yit − ̂b
′

i
̂f t, based on which we can construct the sample covariance

matrix of 𝚺u. Then apply the thresholding to obtain ̂𝚺u. The covariance of Yt is then estimated
by ̂B ̂B′ + ̂𝚺u. It can be proved that the estimator in (6.9) satisfies:

̂𝚺K = ̂B ̂B′ + ̂𝚺u.

Several methods have been proposed to consistently estimate the number of factors. For
instance, Bai and Ng (2002) proposed to use:

K̂ = arg min
0≤k≤M

1
N

tr

(
N∑

j=k+1

�̂�j
̂𝝃j
̂𝝃
′
j

)
+

k(N + T)
NT

log

(
NT

N + T

)
, (6.13)

where M is a prescribed upper bound. The literature also includes, Ahn and Horenstein (2013),
Alessi et al. (2010), Hallin and Liška (2007), Kapetanios (2010), among others. Numerical
studies in Fan et al. (2013) showed that the covariance estimator is robust to overestimating
K. Therefore, in practice, we can also choose a relatively large number for K. Consistency can
still be guaranteed.

6.2.3 Choosing the Threshold

Recall that the threshold value 𝜔T depends on a user-specific constant C. In practice, we need
to choose C to maintain the positive definiteness of the estimated covariances for any given
finite sample. To do so, write the error covariance estimator as ̂𝚺u(C), which depends on C via
the threshold. We choose C in the range where 𝜆min( ̂𝚺u) > 0. Define

Cmin = inf {C > 0 ∶ 𝜆min( ̂𝚺u(M)) > 0,∀M > C}. (6.14)

When C is sufficiently large, the estimator becomes diagonal, while its minimum eigenvalue
must retain strictly positive. Thus, Cmin is well defined and for all C > Cmin, ̂𝚺u(C) is positive
definite under finite sample. We can obtain Cmin by solving 𝜆min( ̂𝚺u(C)) = 0,C ≠ 0. We can
also approximate Cmin by plotting 𝜆min( ̂𝚺u(C)) as a function of C, as illustrated in Figure 6.1.
In practice, we can choose C in the range (Cmin + 𝜖,M) for a small 𝜖 and large enough M.
Choosing the threshold in a range to guarantee the finite-sample positive definiteness has also
been previously suggested by Fryzlewicz (2013).

6.2.4 Asymptotic Results

Under regularity conditions (e.g., strong mixing, exponential-tail distributions), Fan et al.
(2011, 2013) showed that for the error covariance estimator, assuming 𝜔

1−q
T

mN = o(1),

‖ ̂𝚺u − 𝚺u‖2 = OP(𝜔
1−q
T

mN),

and ‖ ̂𝚺−1
u − 𝚺−1

u ‖2 = OP(𝜔
1−q
T

mN).
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Figure 6.1 Minimum eigenvalue of ̂𝚺u(C) as a function of C for three choices of thresholding rules.
Adapted from Fan et al. (2013).

Here q ∈ [0, 1) quantifies the level of sparsity as defined in (6.4), and 𝜔T is given by: for some
C > 0, when factors are known,

𝜔T =
√

log N

T

when factors are unknown,

𝜔T =
√

log N

T
+

1√
N
.

The dimension N is allowed to grow exponentially fast in T .
As for the convergence of ̂𝚺, because the first K eigenvalues of 𝚺 grow with N, one can

hardly estimate𝚺with satisfactory accuracy in either the operator norm or the Frobenius norm.
This problem arises not from the limitation of any estimation method, but due to the nature of
the high-dimensional factor model. We illustrate this in the following example.

Example 6.1 Consider a simplified case where we know bi = (1, 0,… , 0)′ for each
i = 1,… ,N, 𝚺u = I, and {ft}T

t=1 are observable. Then when estimating 𝚺, we only need to
estimate Cov(f) using the sample covariance matrix Ĉov( ft), and obtain an estimator for 𝚺:

̂𝚺 = BĈov( ft)B′ + I.

Simple calculations yield to

‖ ̂𝚺 − 𝚺‖2 = | 1
T

T∑
t=1

(f1t − f̄1)2 − Var (f1t)| ⋅‖𝟏N𝟏′N‖2,

where 𝟏N denotes the N-dimensional column vector of ones with ‖𝟏N𝟏′N‖2 = N. Therefore,

due to the central limit theorem employed on 1√
T

∑T
t=1 (f1t − f̄1)2 − Var (f1t),

√
T

N ‖ ̂𝚺 − 𝚺‖2 is
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asymptotically normal. Hence ‖ ̂𝚺 − 𝚺‖2 diverges if N ≫

√
T, even for such a simplified toy

model.

As we have seen from the above example, the small error of estimating Var (f1t) is substan-
tially amplified due to the presence of ‖𝟏N𝟏′N‖2; the latter in fact determines the size of the
largest eigenvalue of 𝚺. We further illustrate this phenomenon in the following example.

Example 6.2 Consider an ideal case where we know the spectrum except for the first eigenvec-
tor of 𝚺. Let {𝜆j, 𝝃j}N

j=1 be the eigenvalues and vectors, and assume that the largest eigenvalue

𝜆1 ≥ cN for some c > 0. Let ̂𝝃1 be the estimated first eigenvector, and define the covariance
estimator ̂𝚺 = 𝜆1

̂𝝃1
̂𝝃
′
1 +

∑N
j=2 𝜆j𝝃j𝝃

′
j . Assume that ̂𝝃1 is a good estimator in the sense that‖ ̂𝝃1 − 𝝃1‖2 = OP(T−1). However,

‖ ̂𝚺 − 𝚺‖2 = ‖𝜆1( ̂𝝃1
̂𝝃
′
1 − 𝝃1𝝃

′
1)‖2 = 𝜆1OP(‖ ̂𝝃 − 𝝃‖) = OP(𝜆1T−1∕2),

which can diverge when T = O(N2).

On the other hand, we can estimate the precision matrix with a satisfactory rate under the
operator norm. The intuition follows from the fact that 𝚺−1 has bounded eigenvalues. Let ̂𝚺−1

denote the inverse of the POET estimator. Fan et al. (2013) showed that ̂𝚺−1 has the same rate
of convergence as that of 𝚺−1

u . Specifically,

‖ ̂𝚺−1 − 𝚺−1‖2 = OP(𝜔
1−q
T

mN).

Comparing the rates of convergence of known and unknown factors, we see that when
the common factors are unobservable, the rate of convergence has an additional term
mN∕N(1−q)∕2, coming from the impact of estimating the unknown factors. This impact
vanishes when N log N ≫ T , in which case the minimax rate as in Cai and Zhou (2010)
is achieved. As N increases, more information about the common factors is collected,
which results in more accurate estimation of the common factors {f t}T

t=1. Then the rates of
convergence in both observable factor and unobservable factor cases are the same.

6.2.5 A Numerical Illustration

We now illustrate the above theoretical results by using a simple three-factor model with a
sparse error covariance matrix. The distribution of the data-generating process is taken from
Fan et al. (2013) (Section 6.7). Specifically, we simulated from a standard Fama–French
three-factor model. The factor loadings are drawn from a trivariate normal distribution
bi = (b1i, b2i, b3i)′ ∼ N3(𝝁B,𝚺B), and f t follows a vector autoregression of the first order
(VAR(1)) model f t = 𝝁 +𝚽f t−1 + 𝝐t. To make the simulation more realistic, model param-
eters are calibrated from the real data on annualized returns of 100 industrial portfolios,
obtained from the website of Kenneth French. As there are three common factors, the largest
three eigenvalues of 𝚺 are of the same order as

∑N
i=1 b2

ji, j = 1, 2, 3, which are approximately
O(N), and grow linearly with N.

We generate a sparse covariance matrix 𝚺u of the form: 𝚺u = D𝚺0D. Here, 𝚺0 is the error
correlation matrix, and D is the diagonal matrix of the standard deviations of the errors. We
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Table 6.1 Mean and covariance matrix used to generate bi

𝝁B 𝚺B

0.0047 0.0767 −0.00004 0.0087
0.0007 −0.00004 0.0841 0.0013

−1.8078 0.0087 0.0013 0.1649

Table 6.2 Parameters of f t generating process

𝝁 Cov( f t) 𝚽

−0.0050 1.0037 0.0011 −0.0009 −0.0712 0.0468 0.1413
0.0335 0.0011 0.9999 0.0042 −0.0764 −0.0008 0.0646

−0.0756 −0.0009 0.0042 0.9973 0.0195 −0.0071 −0.0544

set D = diag(𝜎1,… , 𝜎p), where each 𝜎i is generated independently from a gamma distribution
G(𝛼, 𝛽), and 𝛼 and 𝛽 are chosen to match the sample mean and sample standard deviation of the
standard deviations of the errors. The off-diagonal entries of 𝚺0 are generated independently
from a normal distribution, with mean and standard deviation equal to the sample mean and
sample standard deviation of the sample correlations among the estimated residuals. We then
employ hard thresholding to make 𝚺0 sparse, where the threshold is found as the smallest
constant that provides the positive definiteness of 𝚺0.

For the simulation, we fix T = 300, and let N increase from 20 to 600 in increments of
20. We plot the averages and standard deviations of the distance from ̂𝚺 and S to the true
covariance matrix 𝚺, under the norm ‖A‖Σ = 1

N ‖𝚺−1∕2A𝚺−1∕2‖F (recall that S denotes the
sample covariance). It is easy to see that

‖ ̂𝚺 − 𝚺‖Σ =
1
N
‖𝚺−1∕2 ̂𝚺𝚺−1∕2 − I‖F,

which resembles the relative errors. We also plot the means and standard deviations of the
distances from ̂𝚺−1 and S−1 to 𝚺−1 under the spectral norm. Due to invertibility, the operator
norm for S−1 is plotted only up to N = 280.

We observe that the unobservable factor model performs just as well as the estimator if the
factors are known. The cost of not knowing the factors is negligible when N is large enough. As
we can see from Figure 6.2, the impact decreases quickly. In addition, when estimating 𝚺−1,
it is hard to distinguish the estimators with known and unknown factors, whose performances
are quite stable compared to that of the sample covariance matrix. Intuitively, as the dimension
increases, more information about the common factors becomes available, which helps infer
the unknown factors. Indeed, as is shown in Bai (2003) and Fan et al. (2014a), the principal
components method can estimate the unknown factors at a rate of:

1
T

T∑
t=1

‖̂f t − f t‖2 = OP

(
1

T2
+

1
N

)
.

Hence, as long as N is relatively large, f t can be estimated pretty accurately.
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Figure 6.2 Averages of N−1‖𝚺−1∕2 ̂𝚺𝚺−1∕2 − I‖F (left panel) and ‖ ̂𝚺−1 − 𝚺−1‖2 (right panel) with
known factors (solid red curve), unknown factors (solid blue curve), and sample covariance (dashed
curve) over 200 simulations, as a function of the dimensionality N. Taken from Fan et al. (2013).

6.3 Precision Matrix Estimation and Graphical Models

Let Y1, · · · ,YT be T data points from an N-dimensional random vector Y = (Y1,… ,YN)′ with
Y ∼ N N(𝟎,𝚺). We denote the precision matrix 𝚯 ∶= 𝚺−1 and define an undirected graph G =
(V ,E) based on the sparsity pattern of 𝚯: let V = {1, · · · ,N} be the node set corresponding to
the N variables in Y, an edge (j, k) ∈ E if and only 𝚯jk ≠ 0.

As we will explain in Section 6.3.1, the graph G describes the conditional independence
relationships between Y1,… ,YN : that is, letting Y\{j,k} ∶= {Y𝓁 ∶ 𝓁 ≠ j, k}, then Yj is inde-
pendent of Yk given Y\{j,k} if and only if (j, k) ∉ E.

In high-dimensional settings where N ≫ T , we assume that many entries of 𝚯 are zero (or,
in other words, the graph G is sparse). The problem of estimating a large sparse precision
matrix 𝚯 is called covariance selection (Dempster, 1972).
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6.3.1 Column-wise Precision Matrix Estimation

A natural approach for estimating 𝚯 is by penalizing the likelihood using the L1-penalty
(Banerjee et al., 2008; Friedman et al., 2008; Yuan and Lin, 2007). To further reduce the esti-
mation bias, Jalali et al. (2012), Lam and Fan (2009), Shen et al., (2012) propose either greedy
algorithms or nonconvex penalties for sparse precision matrix estimation. Under certain con-
ditions, Ravikumar et al. (2011a), Rothman et al. (2008), Wainwright (2009), Zhao and Yu
(2006), Zou (2006), study the theoretical properties of the penalized likelihood methods.

Another approach is to estimate 𝚯 in a column-by-column fashion. For this, Yuan (2010)
and Cai et al. (2011) propose the graphical Dantzig selector and CLIME, respectively, which
can be solved by linear programming. More recently, Liu and Luo (2012) and Sun and Zhang
(2012) have proposed the SCIO and scaled-lasso methods. Compared to the penalized like-
lihood methods, the column-by-column estimation methods are computationally simpler and
are more amenable to theoretical analysis.

In the rest of this chapter, we explain the main ideas of the column-by-column pre-
cision matrix estimation methods. We start with an introduction of notations. Letting
v ∶= (𝑣1, · · · , 𝑣N)′ ∈ ℝN and I(⋅) be the indicator function, for 0 < q < ∞, we define

‖v‖q ∶=

(
N∑

j=1

|𝑣j|q
)1∕q

, ‖v‖0 ∶=
N∑

j=1

I(𝑣j ≠ 0), and ‖v‖∞ ∶= max
j

|𝑣j|.
Let A ∈ ℝN×N be a symmetric matrix and I, J ⊂ {1, · · · ,N} be two sets. Denote by AI,J the
submatrix of A with rows and columns indexed by I and J. Letting A∗j be the jth column of
A and A∗\ j be the submatrix of A with the jth column A∗j removed. We define the following
matrix norms:

‖A‖q ∶= max‖v‖q=1
‖Av‖q , ‖A‖max ∶= max

jk
|Ajk|, and ‖A‖F =

(∑
j,k

|Ajk|2
)1∕2

.

We also denote Λmax(A) and Λmin(A) to be the largest and smallest eigenvalues of A.
The column-by-column precision matrix estimation method exploits the relationship

between conditional distribution of multivariate Gaussian and linear regression. More
specifically, letting Y ∼ N N(𝟎,𝚺), the conditional distribution of Yj given Y\ j satisfies

Yj | Y\ j ∼ N N−1(𝚺\ j,j(𝚺\ j,\ j)−1Y\ j ,𝚺jj − 𝚺\ j,j(𝚺\ j,\ j)−1𝚺\ j,j).

Let 𝜶j ∶= (𝚺\ j,\ j)−1𝚺\ j,j ∈ ℝN−1 and 𝜎
2
j ∶= 𝚺jj − 𝚺\ j,j(𝚺\ j,\ j)−1𝚺\ j,j. We have

Yj = 𝜶′
jY\ j + 𝜖j, (6.15)

where 𝜖j ∼ N (0 , 𝜎
2
j ) is independent of Y\ j. By the block matrix inversion formula, we have

𝚯jj = (Var (𝜖j))−1 = 𝜎
−2
j , (6.16)

𝚯\ j,j = −(Var (𝜖j))−1
𝜶j = −𝜎−2

j 𝜶j. (6.17)

Therefore, we can recover 𝚯 in a column-by-column manner by regressing Yj on Y\ j

for j = 1, 2, · · · ,N. For example, let Y ∈ ℝT×N be the data matrix. We denote by
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𝜶j ∶= (𝛼j1, · · · , 𝛼j(N−1))′ ∈ ℝN−1. Meinshausen and Bühlmann (2006) propose to estimate
each 𝜶j by solving the lasso regression:

�̂�j = arg min
𝜶j∈ℝN−1

1
2T

‖Y∗j − Y∗\ j𝜶j‖2
2 + 𝜆j‖𝜶j‖1,

where 𝜆j is a tuning parameter. Once �̂�j is given, we get the neighborhood edges by reading
out the nonzero coefficients of 𝜶j. The final graph estimate Ĝ is obtained by either the “AND”
or “OR” rule on combining the neighborhoods for all the N nodes. However, the neighborhood
pursuit method of Meinshausen and Bühlmann (2006) only estimates the graph G but cannot
estimate the inverse covariance matrix 𝚯.

To estimate 𝚯, Yuan (2010) proposes to estimate 𝜶j by solving the Dantzig selector:

�̂�j = arg min
𝜶j∈ℝN−1

‖𝜶j‖1 subject to ‖S\ j,j − S\ j,\ j𝜶j‖∞ ≤ 𝛾j,

where S ∶= T−1Y′Y is the sample covariance matrix and 𝛾j is a tuning parameter. Once �̂�j is
given, we can estimate 𝜎

2
j by �̂�

2
j = [1 − 2�̂�′

jS\ j,j + �̂�′
jS\ j,\ j�̂�j]−1. We then get the estimator ̂𝚯

of 𝚯 by plugging �̂�j and �̂�
2
j into (6.16) and (6.17). Yuan (2010) analyzes the L1-norm error‖ ̂𝚯 −𝚯‖1 and shows its minimax optimality over certain model space.

In another work, Sun and Zhang (2012) propose to estimate 𝜶j and 𝜎j by solving a
scaled-lasso problem:

̂bj, �̂�j = arg min
b=(b1,···,bN )′,𝜎

{
b′

jSbj

2𝜎
+

𝜎

2
+ 𝜆

N∑
k=1

Skk|bk| subject to bj = −1

}
.

Once ̂bj is obtained, 𝜶j = ̂b\ j. Sun and Zhang (2012) provide the spectral-norm rate of con-
vergence of the obtained precision matrix estimator.

Cai et al. (2011) proposes the CLIME estimator, which directly estimates the jth column of
𝚯 by solving

̂𝚯∗j = arg min
𝚯∗j

‖𝚯∗j‖1 subject to ‖S𝚯∗j − ej‖∞ ≤ 𝛿j, for j = 1, · · · ,N,

where ej is the jth canonical vector and 𝛿j is a tuning parameter. This optimization problem
can be formulated into a linear program and has the potential to scale to large problems. In a
closely related work of CLIME, Liu and Luo (2012) propose the SCIO estimator, which solves
the jth column of 𝚯 by

̂𝚯∗j = arg min
𝚯∗j

{
1
2
𝚯′

∗jS𝚯∗j − e′j𝚯∗j + 𝜆j‖𝚯∗j‖1

}
.

The SCIO estimator can be solved efficiently by the pathwise coordinate descent algorithm.

6.3.2 The Need for Tuning-insensitive Procedures

Most of the methods described in Section 6.3.1 require choosing some tuning parameters that
control the bias–variance tradeoff. Their theoretical justifications are usually built on some
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theoretical choices of tuning parameters that cannot be implemented in practice. For example,
in the neighborhood pursuit method and the graphical Dantzig selector, the tuning parameter
𝜆j and 𝛾j depend on 𝜎

2
j , which is unknown. The tuning parameters of the CLIME and SCIO

depend on ‖𝚯‖1, which is unknown.
Choosing the regularization parameter in a data-dependent way remains an open prob-

lem. Popular techniques include the Cp-statistic, AIC (Akaike information criterion), BIC
(Bayesian information criterion), extended BIC (Chen and Chen, 2008, 2012; Foygel and
Drton, 2010), RIC (risk inflation criterion; Foster and George, 1994), cross validation, and
covariance penalization (Efron, 2004). Most of these methods require data splitting and have
been only justified for low-dimensional settings. Some progress has been made recently on
developing likelihood-free regularization selection techniques, including permutation meth-
ods (Boos et al., 2009; Lysen, 2009; Wu et al., 2007) and subsampling methods (Bach, 2008;
Ben-david et al., 2006; Lange et al., 2004; Meinshausen and Bühlmann, 2010). Meinshausen
and Bühlmann (2010), Bach (2008), and Liu et al. (2012) also propose to select the tuning
parameters using subsampling. However, these subsampling-based methods are computation-
ally expensive and still lack theoretical guarantees.

To handle the challenge of tuning parameter selection, we introduce a “tuning-insensitive”
procedure for estimating the precision matrix of high-dimensional Gaussian graphical models.
Our method, named TIGER (tuning-insensitive graph estimation and regression), is asymptot-
ically tuning-free and only requires very few efforts to choose the regularization parameter in
finite sample settings.

6.3.3 TIGER: A Tuning-insensitive Approach for Optimal Precision Matrix
Estimation

The main idea of the TIGER method is to estimate the precision matrix 𝚯 in a
column-by-column fashion. For each column, the computation is reduced to a sparse
regression problem. This idea has been adopted by many methods described in Section
6.3.1. These methods differ from each other mainly by how they solve the sparse regression
subproblem. Unlike these existing methods, TIGER solves this sparse regression problem
using the SQRT-lasso (Belloni et al., 2012).

The SQRT-lasso is a penalized optimization algorithm for solving high-dimensional lin-
ear regression problems. For a linear regression problem ̃Y = ̃X𝜷 + 𝝐, where ̃Y ∈ ℝT is the
response, ̃X ∈ ℝT×N is the design matrix, 𝜷 ∈ ℝN is the vector of unknown coefficients, and
𝝐 ∈ ℝT is the noise vector. The SQRT-lasso estimates 𝜷 by solving

̂𝜷 = arg min
𝜷∈ℝN

{
1√
T
‖ ̃Y − ̃X𝜷‖2 + 𝜆‖𝜷‖1

}
,

where 𝜆 is the tuning parameter. It is shown in Belloni et al. (2012) that the choice of 𝜆 for the
SQRT-lasso method is asymptotically universal and does not depend on any unknown param-
eter. In contrast, most other methods, including the lasso and Dantzig selector, rely heavily
on a known standard deviation of the noise. Moreover, the SQRT-lasso method achieves near
oracle performance for the estimation of 𝜷.
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In Liu and Wang (2012), they show that the objective function of the scaled-lasso can be
viewed as a variational upper bound of the SQRT-lasso. Thus, the TIGER method is essentially
equivalent to the method in Sun and Zhang (2012). However, the SQRT-lasso is more amenable
to theoretical analysis and allows us to simultaneously establish optimal rates of convergence
for the precision matrix estimation under many different norms.

Let ̂𝚪 ∶= diag(S) be an N-dimensional diagonal matrix with the diagonal elements the same
as those in S. Conditioned on the observed data Y1, · · · ,YT , we define

Z ∶= (Z1, · · · ,ZN)′ = Y ̂𝚪−1∕2
.

By (6.15), we have
Zj
̂𝚪1∕2

jj
= 𝜶′

jZ\ j
̂𝚪1∕2

\ j,\ j
+ 𝜖j, (6.18)

We define

𝜷 j ∶= ̂𝚪1∕2
\ j,\ j

̂𝚪−1∕2
jj

𝜶j and 𝜏
2
j = 𝜎

2
j
̂𝚪−1

jj .

Therefore, we have
Zj = 𝜷′jZ\ j + ̂𝚪−1∕2

jj
𝜖j. (6.19)

We define ̂R to be the sample correlation matrix: ̂R ∶= (diag(S))−1∕2S(diag(S))−1∕2. Motivated
by the model in (6.19), we propose the following precision matrix estimator.

TIGER Algorithm

For j = 1,… ,N, we estimate the jth column of 𝚯 by solving:

̂𝛃j ∶= arg min
𝛃j∈ℝN−1

{√
1 − 2𝛃′j ̂𝐑⧵j,j + 𝛃′j ̂𝐑⧵j,⧵j𝛃j + 𝜆

‖‖𝛃j
‖‖1

}
, (6.20)

𝜏j ∶=
√

1 − 2 ̂𝛃′j ̂𝐑⧵j,j + ̂𝛃′j ̂𝐑⧵j,⧵j
̂𝛃j, (6.21)

̂𝚯jj = 𝜏
−2
j

̂𝚪−1
jj and ̂𝚯⧵j,j = −𝜏−2

j
̂𝚪−1∕2

jj
̂𝚪−1∕2
⧵j,⧵j

̂𝛃j.

For the estimator in (6.20), 𝜆 is a tuning parameter. In Section 6.3.4, we show that by choos-

ing 𝜆 = 𝜋

√
log N

2T , the obtained estimator achieves the optimal rates of convergence in the
asymptotic setting. Therefore, the TIGER procedure is asymptotically tuning free. For finite
samples, we set

𝜆 ∶= 𝜁𝜋

√
log N

2T
(6.22)

with 𝜁 chosen from a range [
√

2∕𝜋, 2]. Since the choice of 𝜁 does not depend on any unknown
parameters, we call the procedure tuning-insensitive. Practically, we found that simply setting
𝜁 = 1 gives satisfactory finite sample performance in most applications.
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If a symmetric precision matrix estimate is preferred, we conduct the following correction:
̃𝚯jk = min{ ̂𝚯jk,

̂𝚯kj} for all k ≠ j. Another symmetrization method is

̃𝚯 =
̂𝚯 + ̂𝚯′

2
.

As has been shown by Cai et al. (2011), if ̂𝚯 is a good estimator, then ̃𝚯 will also be a good
estimator: they achieve the same rates of convergence in the asymptotic settings.

Let Z ∈ ℝT×N be the normalized data matrix, that is, Z∗j = Y∗j𝚺
−1∕2
jj

for j = 1, · · · ,N. An
equivalent form of (6.20) and (6.21) is

̂𝜷 j = arg min
𝜷 j∈ℝN−1

{
1√
T
‖Z∗j − Z∗\ j𝜷 j‖2 + 𝜆‖𝜷 j‖1

}
, (6.23)

𝜏j =
1√
T
‖Z∗j − Z∗\ j

̂𝜷 j‖2. (6.24)

Once ̂𝚯 is estimated, we can also estimate the graph Ĝ ∶= (V ,Ê) based on the sparsity pattern
of ̂𝚯jk ≠ 0.

6.3.4 Computation

Instead of directly solving (6.20) and (6.21), we consider the following optimization:

̂𝜷 j, 𝜏j ∶= arg min
𝜷 j∈ℝN−1

,𝜏j≥0

{
1 − 2𝜷′j

̂R\ j,j + 𝜷′j ̂R\ j,\ j𝜷 j

2𝜏j
+

𝜏j

2
+ 𝜆‖𝜷 j‖1

}
, (6.25)

Liu and Wang (2012) show that the solution to (6.20) and (6.21) is the same as that to
(6.25). Equation (6.25) is jointly convex with respect to 𝜷 j and 𝜏j and can be solved by a
coordinate-descent procedure. In the tth iteration, for a given 𝜏

(t)
j

, we first solve a subproblem

𝜷
(t+1)
j

∶= arg min
𝜷 j∈ℝN−1

⎧⎪⎨⎪⎩
1 − 2𝜷′j

̂R\ j,j + 𝜷′j ̂R\ j,\ j𝜷 j

2𝜏(t)
j

+ 𝜆‖𝜷 j‖1

⎫⎪⎬⎪⎭ ,

This is a lasso problem and can be efficiently solved by the coordinate-descent algorithm devel-
oped by Friedman et al. (2007). Once 𝜷(t+1)

j
is obtained, we can calculate 𝜏

(t+1)
j

as

𝜏
(t+1)
j

=
√

1 − 2(𝜷(t+1)
j

)′ ̂R\ j,j + (𝜷(t+1)
j

)′ ̂R\ j,\ j(𝜷
(t+1)
j

).

We iterate these two steps until the algorithm converges.

6.3.5 Theoretical Properties of TIGER

Liu and Wang (2012) establish the rates of convergence of the TIGER estimator ̂𝚯 to the
true precision matrix 𝚯 under different norms. In particular, let ‖𝚯‖max ∶= max

jk
|𝚯jk| and
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‖𝚯‖1 ∶= max
j

∑
k|𝚯jk|. Under the assumption that the condition number of 𝚯 is bounded by

a constant, they establish the element-wise sup-norm rate of convergence:

‖ ̂𝚯 −𝚯‖max = OP

(‖𝚯‖1

√
log N

T

)
. (6.26)

Under mild conditions, the obtained rate in (6.26) is minimax optimal over the model class
consisting of precision matrices with bounded condition numbers.

Let I(⋅) be the indicator function and s ∶=
∑

j≠kI(𝚯jk ≠ 0) be the number of nonzero
off-diagonal elements of 𝚯. The result in (6.26) implies that the Frobenious norm error
between ̂𝚯 and 𝚯 satisfies:

‖ ̂𝚯 −𝚯‖F ∶=
√∑

i,j

| ̂𝚯jk −𝚯jk|2 = OP

(‖𝚯‖1

√
(N + s) log N

T

)
. (6.27)

The rate in (6.27) is the minimax optimal rate for the Frobenious norm error in the same model
class consisting of precision matrices with bounded condition numbers.

Let ‖𝚯‖2 be the largest eigenvalue of 𝚯 (i.e., ‖𝚯‖2 is the spectral norm of 𝚯) and k ∶=
max

i=1,···,N

∑
jI(𝚯ij ≠ 0). Liu and Wang (2010) also show that

‖ ̂𝚯 −𝚯‖2 ≤ ‖ ̂𝚯 −𝚯‖1 = OP

(
k‖𝚯‖2

√
log N

T

)
. (6.28)

This spectral norm rate in (6.28) is also minimax optimal over the same model class as before.

6.3.6 Applications to Modeling Stock Returns

We apply the TIGER method to explore a stock price dataset collected from Yahoo! Finance
(finance.yahoo.com). More specifically, the daily closing prices were obtained for 452 stocks
that were consistently in the S&P 500 index between January 1, 2003, through January 1,
2011. This gives us altogether 2015 data points, and each data point corresponds to the vector
of closing prices on a trading day. With St,j denoting the closing price of stock j on day t, we
consider the log-return variable Yjt = log (St,j∕St−1,j) and build graphs over the indices j.

We Winsorize (or truncate) every stock so that its data points are within six times the mean
absolute deviation from the sample average. In Figure 6.3, we show boxplots for 10 randomly
chosen stocks. We see that the data contain outlier even after Winsorization; the reasons for
these outliers include splits in a stock, which increase the number of shares. It is known that
the log-return data are heavy-tailed. To suitably apply the TIGER method, we Gaussianize
the marginal distribution of the data by the normal-score transformation. In Figure 6.3b, we
compare the boxplots of the data before and after Gaussianization. We see that Gaussianization
alleviates the effect of outliers.

In this analysis, we use the subset of the data between January 1, 2003, and January 1, 2008,
before the onset of the financial crisis. The 452 stocks are categorized into 10 Global Indus-
try Classification Standard (GICS) sectors, including Consumer Discretionary (70
stocks), Consumer Staples (35 stocks), Energy (37 stocks), Financials (74 stocks),

finance.yahoo.com
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Figure 6.3 Boxplots of Yjt = log (St,j∕St−1,j) for 10 stocks. As can be seen, the original data has many
outliers, which is addressed by the normal-score transformation on the rescaled data (right).

Health Care (46 stocks), Industrials (59 stocks), Information Technology
(64 stocks),Materials (29 stocks),Telecommunications Services (6 stocks), and
Utilities (32 stocks). It is expected that stocks from the same GICS sectors should tend
to be clustered together in the estimated graph, since stocks from the same GICS sector tend
to interact more with each other. In Figure 6.4, the nodes are colored according to the GICS
sector of the corresponding stock.
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Figure 6.4 The estimated TIGER graph using the S&P 500 stock data from January 1, 2003, to January
1, 2008.

In Figure 6.4 we visualize the estimated graph using the TIGER method on the data from
January 1, 2003, to January 1, 2008. There are altogether T = 1257 data points and N =
452 dimensions. Even though the TIGER procedure is asymptotically tuning-free, Liu and
Wang (2010) show that a fine-tune step can further improve its finite sample performance. To
fine-tune the tuning parameter, we adopt a variant of the stability selection method proposed
by Meinshausen and Bühlmann (2010). As suggested in (6.22), we consider 10 equal-distance
values of 𝜁 chosen from a range [

√
2∕𝜋, 2]. We randomly sample 100 sub-datasets, each

containing B = ⌊10
√

T⌋ = 320 data points. On each of these 100 subsampled datasets, we
estimate a TIGER graph for each tuning parameter. In the final graph shown in Figure 6.4, we
use 𝜁 = 1, and an edge is present only if it appears more than 80% of the time among the 100
subsampled datasets (with all the singleton nodes removed).

From Figure 6.4, we see that stocks from the same GICS sectors are indeed close to
each other in the graph. We refrain from drawing any hard conclusions about the effective-
ness of the estimated TIGER graph—how it is used will depend on the application. One
potential application of such a graph could be for portfolio optimization. When designing
a portfolio, we may want to choose stocks with large graph distances to minimize the
investment risk.
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Figure 6.5 The histogram and normal QQ plots of the marginal expression levels of the gene MECPS.
We see the data are not exactly Gaussian distributed. Adapted from Liu and Wang (2012).

6.3.7 Applications to Genomic Network

As discussed in this chapter, an important application of precision matrix estimation is to esti-
mate high-dimensional graphical models. In this section, we apply the TIGER method on a
gene expression dataset to reconstruct the conditional independence graph of the expression
levels of 39 genes.

This dataset, which includes 118 gene expression arrays from Arabidopsis thaliana, origi-
nally appeared in Wille et al. (2004). Our analysis focuses on gene expression from 39 genes
involved in two isoprenoid metabolic pathways: 16 from the mevalonate (MVA) pathway are
located in the cytoplasm, 18 from the plastidial (MEP) pathway are located in the chloroplast,
and 5 are located in the mitochondria. While the two pathways generally operate indepen-
dently, crosstalk is known to happen (Wille et al. 2004). Our scientific goal is to recover the
gene regulatory network, with special interest in crosstalk.

We first examine whether the data actually satisfy the Gaussian distribution assumption.
In Figure 6.5, we plot the histogram and normal QQ plot of the expression levels of a gene
named MECPS. From the histogram, we see the distribution is left-skewed compared to the
Gaussian distribution. From the normal QQ plot, we see the empirical distribution has a heav-
ier tail compared to Gaussian. To suitably apply the TIGER method on this dataset, we need
to first transform the data so that its distribution is closer to Gaussian. Therefore, we Gaus-
sianize the marginal expression values of each gene by converting them to the corresponding
normal-scores. This is automatically done by the huge.npn function in the R package huge
(Zhao et al., 2012).

We apply the TIGER on the transformed data using the default tuning parameter 𝜁 =
√

2∕𝜋.
The estimated network is shown in Figure 6.6. We note that the estimated network is very
sparse with only 44 edges. Prior investigations suggest that the connections from genes AACT1
and HMGR2 to gene MECPS indicate a primary source of the crosstalk between the MEP and
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Figure 6.6 The estimated gene networks of the Arabadopsis dataset. The within-pathway edges are
denoted by solid lines, and between-pathway edges are denoted by dashed lines. From Liu and Wang
(2012).

MVA pathways, and these edges are presented in the estimated network. MECPS is clearly a
hub gene for this pathway.

For the MEP pathway, the genes DXPS2, DXR, MCT, CMK, HDR, and MECPS are con-
nected as in the true metabolic pathway. Similarly, for the MVA pathway, the genes AACT2,
HMGR2, MK, MPDC1, MPDC2, FPPS1, and FPP2 are closely connected. Our analysis sug-
gests 11 cross-pathway links. This is consistent to previous investigation in Wille et al. (2004).
This result suggests that there might exist rich interpathway crosstalks.

6.4 Financial Applications

6.4.1 Estimating Risks of Large Portfolios

Estimating and assessing the risk of a large portfolio are important topics in financial econo-
metrics and risk management. The risk of a given portfolio allocation vector wN is conveniently
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measured by (w′
N𝚺wN)1∕2, in which 𝚺 is a volatility (covariance) matrix of the assets’ returns.

Often multiple portfolio risks are of interest, and hence it is essential to estimate the volatility
matrix 𝚺. On the other hand, assets’ excess returns are often driven by a few common factors.
Hence 𝚺 can be estimated via factor analysis as described in Section 6.1.

Let{Yt}T
t=1 be a strictly stationary time-series of an N × 1 vector of observed asset returns

and 𝚺 = Cov(Yt). We assume that Yt satisfies an approximate factor model:

Yt = Bf t + ut, t ≤ T , (6.29)

where B is an N × K matrix of factor loadings; f t is a K × 1 vector of common factors; and
ut is an N × 1 vector of idiosyncratic error components. In contrast to N and T , here K is
assumed to be fixed. The common factors may or may not be observable. For example, Fama
and French (1993) identified three known factors that have successfully described the US stock
market. In addition, macroeconomic and financial market variables have been thought to cap-
ture systematic risks as observable factors. On the other hand, in an empirical study, Bai and
Ng (2002) determined two unobservable factors for stocks traded on the New York Stock
Exchange during 1994–1998.

As described in Section 6.1, the factor model implies the following decomposition of 𝚺:

𝚺 = BCov( f t)B′ + 𝚺u. (6.30)

In the case of observable factors, an estimator of 𝚺 is constructed based on thresholding the
covariance matrix of idiosyncratic errors, as in (6.7), denoted by ̂𝚺f . In the case of unobservable
factors, 𝚺 can be estimated by POET as in (6.9), denoted by ̂𝚺P. Because K, the number of
factors, might also be unknown, this estimator uses a data-driven number of factors K̂. Based

on the factor analysis, the risk for a given portfolio wN can be estimated by either
√

w′
N
̂𝚺f wN

or
√

w′
N
̂𝚺PwN , depending on whether f t is observable.

6.4.1.1 Estimating a Minimum Variance Portfolio

There are also many methods proposed to choose data-dependent portfolios. For instance, esti-
mated portfolio vectors can arise when the ideal portfolio wN depends on the inverse of the
large covariance 𝚺 (Markowitz, 1952), by consistently estimating 𝚺−1. Studying the effects of
estimating 𝚺 is also important for portfolio allocations. In these problems, estimation errors in
estimating 𝚺 can have substantial implications (see discussions in El Karoui, 2010). For illus-
tration, consider the following example of estimating the global minimum variance portfolio.

The global minimum variance portfolio is the solution to the problem:

wgm𝑣

N
= arg min

w
(w′𝚺w), such that w′e = 1

where e = (1,… , 1), yielding wgm𝑣

N
= 𝚺−1e∕(e′𝚺−1e). Although this portfolio does not belong

to the efficient frontier, Jagannathan and Ma (2003) showed that its performance is comparable
with those of other tangency portfolios.
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The factor model yields a positive definite covariance estimator for 𝚺, which then leads to
a data-dependent portfolio:

ŵgm𝑣

N
=

̂𝚺−1e

e′ ̂𝚺−1e
,

̂𝚺−1 =

{
̂𝚺−1

f known factors;

̂𝚺−1
P , unknown factors

.

It can be shown that ŵgm𝑣

N
is L1-consistent, in the sense that

‖ŵgm𝑣

N
− wgm𝑣

N
‖1 = oP(1).

We refer to El Karoui (2010) and Ledoit and Wolf (2003) for further discussions on the effects
of estimating large covariance matrices for portfolio selections.

6.4.1.2 Statistical Inference of the Risks

Confidence intervals of the true risk w′
N𝚺wN can be constructed based on the estimated risk

w′
N
̂𝚺wN , where ̂𝚺 = ̂𝚺f or ̂𝚺P, depending on whether the factors are known or not. Fan et al.

(2014a) showed that, under some regularity conditions, respectively,[
Var

(
T∑

t=1

(w′
NBf t)2

)]−1∕2

Tŵ′
N( ̂𝚺 − 𝚺)ŵN→

dN (0, 1), ̂𝚺 = ̂𝚺f or ̂𝚺P,

where ŵN is an L1-consistent estimator of wN .
An important implication is that the asymptotic variance is the same regardless of whether

the factors are observable or not. Therefore, the impact of estimating the unknown factors is
asymptotically negligible. In addition, it can also be shown that the asymptotic variance is
slightly smaller than that of w′

NSwN , the sample covariance-based risk estimator. The asymp-

totic variance Var
(∑T

t=1 (w′
NBf t)2

)
can be consistently estimated, using the heteroscedastic-

ity and autocorrelation consistent covariance estimator of Newey and West (1987) based on
the truncated sum of estimated autocovariance functions. Therefore, the above limiting dis-
tributions can be employed to assess the uncertainty of the estimated risks by, for example,
constructing asymptotic confidence intervals for (w′

N𝚺wN)1∕2. Fan et al. (2014a) showed that
the confidence interval is practically accurate even at the finite sample.

6.4.2 Large Panel Test of Factor Pricing Models

The content of this section is adapted from the recent work by Fan et al. (2014b), including
graphs and tables. We consider a factor-pricing model, in which the excess return has the
following decomposition:

Yit = 𝛼i + b′
if t + uit, i = 1,… ,N, t = 1,… ,T . (6.31)

In this subsection, we shall focus on the case in which f t’s are observable.
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Let 𝜶 = (𝛼1,… , 𝛼N)′ be the vector of intercepts for all N financial assets. The key impli-
cation from the multifactor pricing theory is that 𝜶 should be zero, known as mean-variance
efficiency, for any asset i. An important question is then if such a pricing theory can be validated
by empirical data, namely whether the null hypothesis

H0 ∶ 𝜶 = 0, (6.32)

is consistent with empirical data.
Most of the existing tests to the problem (6.32) are based on the quadratic statistic W =

�̂�
′ ̂𝚺−1

u �̂�, where �̂� is the OLS estimator for 𝜶, ̂𝚺−1
u is the estimated inverse of the error covari-

ance, and aT is a positive number that depends on the factors f t only. Prominent examples are
the test given by Gibbons et al. (1989), the GMM test in MacKinlay and Richardson (1991),
and the likelihood ratio test in Beaulieu et al. (2007), all in quadratic forms. Recently, Pesaran
and Yamagata (2012) studied the limiting theory of the normalized W assuming 𝚺−1

u were
known. They also considered a quadratic test where ̂𝚺−1

u is replaced with its diagonalized
matrix.

There are, however, two main challenges in the quadratic statistic W. The first is that estimat-
ing 𝚺−1

u is a challenging problem when N > T , as described previously. Secondly, even though
𝚺−1

u were known, this test suffers from a lower power in a high-dimensional-low-sample-size
situation, as we now explain.

For simplicity, let us temporarily assume that {ut}T
t=1 are independent and identically dis-

tributed (i.i.d.) Gaussian and 𝚺u = Cov(ut) is known, where ut = (u1t,… , uNt). Under H0,
W is 𝜒

2
N distributed, with the critical value 𝜒

2
N,q, which is of order N, at significant level q.

The test has no power at all when T𝜶′𝚺u𝜶 = o(N) or ‖𝜶‖2 = o(N∕T), assuming that 𝚺u has
bounded eigenvalues. This is not unusual for the high-dimension-low-sample-size situation we
encounter, where there are thousands of assets to be tested over a relatively short time period
(e.g. 60 monthly data). And it is especially the case when there are only a few significant
alphas that arouse market inefficiency. By a similar argument, this problem can not be res-
cued by using any genuine quadratic statistic, which are powerful only when a non-negligible
fraction of assets are mispriced. Indeed, the factor N above reflects the noise accumulation in
estimating N parameters of 𝜶.

6.4.2.1 High-dimensional Wald Test

Suppose {ut} is i.i.d. N (0,𝚺u). Then as N,T → ∞, Pesaran and Yamagata (2012) showed that

Ta�̂�′𝚺−1
u �̂� − N√
2N

→dN (0, 1)

where a = 1 − 1
T

∑
t f ′t( 1

T

∑
t f t f ′t)−1 1

T

∑
t f t. This normalized Wald test is infeasible unless 𝚺−1

u
is consistently estimable. Under the sparse assumption of 𝚺u, this can be achieved by thresh-
olding estimation as previously described. Letting ̂𝚺−1

u be the thresholding estimator, then a
feasible high-dimensional Wald test is

Js𝑤 ≡
Ta�̂�′ ̂𝚺−1

u �̂� − N√
2N

.
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With further technical arguments (see Fan et al., 2014b), it can be shown that Js𝑤→
dN (0, 1).

Note that it is very technically involved to show that substituting ̂𝚺−1
u for 𝚺−1

u is asymptotically
negligible when N∕T → ∞.

6.4.2.2 Power Enhancement Test

Traditional tests of factor pricing models are not powerful unless there are enough stocks that
have nonvanishing alphas. Even if some individual assets are significantly mispriced, their
nontrivial contributions to the test statistic are insufficient to reject the null hypothesis. This
problem can be resolved by introducing a power enhancement component (PEM) J0 to the
normalized Wald statistic Js𝑤. The PEM J0 is a screening statistic, designed to detect sparse
alternatives with significant individual alphas.

Specifically, for some predetermined threshold value 𝛿T > 0, define a set

Ŝ =
{

j ∶
|�̂�j|
�̂�j

> 𝛿T , j = 1,… ,N

}
, (6.33)

where �̂�j is the OLS estimator and �̂�
2
j = 1

T

∑T
t=1 û2

jt∕a is T times the estimated variance of �̂�j,
with ûjt being the regression residuals. Denote a subvector of �̂� by

�̂�Ŝ = (�̂�j ∶ j ∈ Ŝ),

the screened-out alpha estimators, which can be interpreted as estimated alphas of mispriced
stocks. Let ̂𝚺Ŝ be the submatrix of ̂𝚺u formed by the rows and columns whose indices are in
Ŝ. So ̂𝚺Ŝ∕(Ta) is an estimated conditional covariance matrix of �̂�Ŝ, given the common factors
and Ŝ.

With the above notation, we define the screening statistic as

J0 =
√

NTa�̂�′
Ŝ
̂𝚺−1

Ŝ
�̂�Ŝ. (6.34)

The choice of 𝛿T must suppress most of the noises, resulting in an empty set of Ŝ under the null
hypothesis. On the other hand, 𝛿T cannot be too large to filter out important signals of alphas
under the alternative. For this purpose, noting that the maximum noise level is OP(

√
log N∕T),

we let

𝛿T = log (log T)
√

log N

T
.

This is a high criticism test. When N = 500 and T = 60, 𝛿T = 3.514. With this choice of 𝛿T ,
if we define, for 𝜎2

j = (𝚺u)jj∕(1 − Ef ′t(Ef t f ′t)−1Ef t),

S =
{

j ∶
|𝛼j|
𝜎j

> 2𝛿T , j = 1,… ,N

}
, (6.35)

then under mild conditions, P(S ⊂ Ŝ) → 1, with some additional conditions, P(S = Ŝ) → 1,
and �̂�Ŝ behaves like 𝜶S = (𝜶j ∶ j ∈ S).

The power enhancement test is then defined to be

J0 + Js𝑤,
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Table 6.3 Variable descriptive statistics for the Fama–French three-factor model (Adapted from Fan
et al., 2014b)

Variables Mean Std dev. Median Min Max

N
𝜏

617.70 26.31 621 574 665|Ŝ|0 5.49 5.48 4 0 37| ̄�̂�|𝜏i (%) 0.9973 0.1630 0.9322 0.7899 1.3897| ̄�̂�|𝜏
i∈Ŝ

(%) 4.3003 0.9274 4.1056 1.7303 8.1299
p-value of J

𝑤i 0.2844 0.2998 0.1811 0 0.9946
p-value of Js𝑤 0.1861 0.2947 0.0150 0 0.9926
p-value of PEM 0.1256 0.2602 0.0003 0 0.9836

whose detectable region is the union of those of J0 and Js𝑤. Note that under the null hypothesis,
S = ∅, so by the selection consistency, J0 = 0 with probability approaching one. Thus, the null
distribution of the power enhancement test is that of Js𝑤, which is standard normal. This means
adding J0 does not introduce asymptotic size distortion. On the other hand, since J0 ≥ 0, the
power of J0 + Js𝑤 is always enhanced. Fan et al. (2014b) showed that the test is consistent
against the alternative as any subset of:

{𝜶 ∈ ℝN ∶ max
j≤N

|𝛼j| > 2𝛿T max
j≤N

𝜎j} ∪ {𝜶 ∈ ℝN ∶ ‖𝜶‖2
≫ (N log N)∕T}.

6.4.2.3 Empirical Study

We study monthly returns on all the S&P 500 constituents from the CRSP database for
the period January 1980 to December 2012, during which a total of 1170 stocks have
entered the index for our study. Testing of market efficiency is performed on a rolling
window basis: for each month from December 1984 to December 2012. The test statistics
are evaluated using the preceding 60 months’ returns (T = 60). The panel at each testing
month consists of stocks without missing observations in the past 5 years, which yields a
cross-sectional dimension much larger than the time-series dimension (N > T). For testing
months 𝜏 = 12∕1984,… , 12∕2012, we fit the Fama–French three-factor (FF-3) model:

r𝜏it − r𝜏ft = 𝛼
𝜏

i + 𝛽
𝜏

i, MKT(MKT𝜏

t − r𝜏ft) + 𝛽
𝜏

i, SMBSMB𝜏

t + 𝛽
𝜏

i, HMLHML𝜏

t + u𝜏it, (6.36)

for i = 1,… ,N
𝜏

and t = 𝜏 − 59,… , 𝜏, where rit represents the return for stock i at month t; rft
is the risk-free rate; and MKT, SMB, and HML constitute the FF-3 model’s market, size, and
value factors.

Table 6.3 summarizes descriptive statistics for different components and estimates in the
model. On average, 618 stocks (which is more than 500 because we are recording stocks
that have ever become the constituents of the index) enter the panel of the regression dur-
ing each 5-year estimation window, of which 5.5 stocks are selected by Ŝ. The threshold
𝛿T =

√
log N∕T log (log T) is about 0.45 on average, which changes as the panel size N

changes for every window of estimation. The selected stocks have much larger alphas than
other stocks do, as expected. As far as the signs of those alpha estimates are concerned, 61.84%
of all the estimated alphas are positive, and 80.66% of all the selected alphas are positive. This
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Figure 6.7 Dynamics of p-values and selected stocks (%, from Fan et al., 2014b).
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Figure 6.8 Histograms of p-values for J
𝑤i, Js𝑤, and PEM (from Fan et al., 2014b).

indicates that market inefficiency is primarily contributed by stocks with extra returns, instead
of a large portion of stocks with small alphas, demonstrating the sparse alternatives. In addi-
tion, we notice that the p-values of the thresholded Wald test Js𝑤 is generally smaller than that
of the test J

𝑤i given by Pesaran and Yamagata (2012).
We plot the running p-values of J

𝑤i, Js𝑤, and the PEM test (augmented from Js𝑤) from
December 1984 to December 2012. We also add the dynamics of the percentage of selected
stocks (|Ŝ|0∕N) to the plot, as shown in Figure 6.7. There is a strong negative correlation
between the stock selection percentage and the p-values of these tests. This shows that the
degree of market efficiency is influenced not only by the aggregation of alphas, but also by
those extreme ones. We also observe that the p-value line of the PEM test lies beneath those of
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Js𝑤 and J
𝑤i tests as a result of enhanced power, and hence it captures several important mar-

ket disruptions ignored by the latter two (e.g. Black Monday in 1987, collapse of the Japanese
bubble in late 1990, and the European sovereign debt crisis after 2010). Indeed, the null hypoth-
esis of market efficiency is rejected by the PEM test at the 5% level during almost all financial
crises, including major financial crises such as Black Wednesday in 1992, the Asian financial
crisis in 1997, and the financial crisis in 2008, which are also detected by Js𝑤 and J

𝑤i tests. For
30%, 60%, and 72% of the study period, J

𝑤i, Js𝑤, and the PEM test conclude that the market is
inefficient, respectively. The histograms of the p-values of the three test statistics are displayed
in Figure 6.8.

6.5 Statistical Inference in Panel Data Models

6.5.1 Efficient Estimation in Pure Factor Models

The sparse covariance estimation can also be employed to improve the estimation efficiency
in factor models. Consider:

Yit = b′
if t + uit, i ≤ N, t ≤ T ,

In the model, only Yit is observable. In most literature, the factors and loadings are estimated
via the principal components (PC) method, which solves a constraint minimization problem:

min
B,f t

T∑
t=1

(Yt − Bf t)′(Yt − Bf t)

subject to some identifiability constraints so that the solution is unique. The PC method
does not incorporate the error covariance 𝚺u, hence it essentially treats the error terms ut
as cross-sectionally homoscedastic and uncorrelated. It is well known that under either
cross-sectional heteroscedasticity or correlations, the PC method is not efficient. On the other
hand, when 𝚺u is assumed to be sparse and estimated via thresholding, we can incorporate
this covariance estimator into the estimation, and improve the estimation efficiency.

6.5.1.1 Weighted Principal Components

We can estimate the factors and loadings via the weighted least squares. For some N × N
positive definite weight matrix W, solve the following optimization problem:

min
B,f t

T∑
t=1

(Yt − Bf t)′W(Yt − Bf t),

subject to:

1
T

T∑
t=1

f t f ′t = I, B′WB is diagonal.

Here, W can be either stochastic or deterministic. When W is stochastic, it can be understood
as a consistent estimator of some deterministic matrix.
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Solving the constrained optimization problem gives the WPC estimators: ̂bj and ̂f t are

both K × 1 vectors such that the columns of the T × K matrix ̂F∕
√

T = (̂f 1,… ,
̂f T )′∕

√
T are

the eigenvectors corresponding to the largest K eigenvalues of YWY′, and ̂B = T−1Y′ ̂F =
( ̂b1,… ,

̂bN)′. This method is called weighted principal components (WPC; see Bai and Liao,
2013), to distinguish from the traditional PC method that uses W = I. Note that PC does not
encounter the problem of estimating large covariance matrices, and is not efficient when {uit}’s
are cross-sectionally correlated across i.

Bai and Liao (2013) studied the inferential theory of the WPC estimators. In particular, they
showed that for the estimated common component, as T ,N → ∞,

̂b′
i
̂f t − b′

if t

(b′
i
ΞWbi∕N + f ′t𝛀if t∕T)1∕2

→dN (0, 1). (6.37)

with ΞW = 𝚺−1
Λ B′W𝚺uWB𝚺−1

Λ ∕N and 𝛀i = Cov( f t)−1ΦiCov( f t)−1, where

Φi = E( f tf
′
tu

2
it) +

∞∑
t=1

E[( f 1f ′1+t + f 1+tf
′
1)ui1ui,1+t],

and 𝚺Λ = limN→∞B′WB∕N, assumed to exist. Note that although the factors and loadings
are not individually identifiable, ̂b′

i
̂f t can consistently estimate the common component b′

if t,
without introducing a rotational transformation.

6.5.1.2 Optimal Weight Matrix

There are three interesting choices for the weight matrix W. The most commonly seen weight
is the identity matrix, which leads to the regular PC estimator. The second choice of the weight
matrix takes W =diag−1{Var (u1t),… ,Var (uNt)}. The third choice is the optimal weight.
Note that the asymptotic variance of the estimated common component in (6.37) depends on
W only through

ΞW = 𝚺−1
Λ B′W𝚺uWB𝚺−1

Λ ∕N.

It is straightforward to show that when W∗ = 𝚺−1
u , the asymptotic variance is minimized, that

is, for any positive definite matrix W, ΞW − ΞW∗ is semipositive definite. In other words, the
choice W = 𝚺−1

u as the weight matrix of the WPC estimator yields the minimum asymptotic
variance of the estimated common component.

Table 6.4 gives the estimators and the corresponding weight matrix. The heteroscedas-
tic WPC uses W = I, which takes into account the cross-sectional heteroscedasticity of
(u1t,… , uNt), while the efficient WPC uses the optimal weight matrix 𝚺−1

u . Under the
sparsity assumption, the optimal weight matrix can be estimated using the POET estimator as
described in Section 6.3.

6.5.2 Panel Data Model with Interactive Effects

A closely related model is the panel data with a factor structure in the error term:

Yit = x′it𝜷 + 𝜀it, 𝜀it = b′
if t + uit, i ≤ N, t ≤ T , (6.38)
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Table 6.4 Three interesting choices of the weight matrix.

Eigenvectors of W

Regular PC YY′ I
Heteroscedastic WPC Ydiag(𝚺u)−1Y′ diag(𝚺u)−1

Efficient WPC Y𝚺−1
u Y′ 𝚺−1

u

The estimated ̂F∕
√

T is the eigenvectors of the largest r eigen-
values of YWY′, and ̂B = T−1Y′ ̂F.

Table 6.5 Canonical correlations for simulation study (from Bai and Liao, 2013)

Loadings Factors ( 1
NT

∑
i,t( ̂b′

i
̂f t − b′

if t)2)1∕2

T N PC HWPC EWPC PC HWPC EWPC PC HWPC EWPC
(The larger the better) (The larger the better) (The smaller the better)

100 80 0.433 0.545 0.631 0.427 0.551 0.652 0.570 0.540 0.496
100 150 0.613 0.761 0.807 0.661 0.835 0.902 0.385 0.346 0.307
100 200 0.751 0.797 0.822 0.827 0.882 0.924 0.333 0.312 0.284
150 100 0.380 0.558 0.738 0.371 0.557 0.749 0.443 0.394 0.334
150 200 0.836 0.865 0.885 0.853 0.897 0.942 0.313 0.276 0.240
150 300 0.882 0.892 0.901 0.927 0.946 0.973 0.257 0.243 0.222

The columns of loadings and factors report the canonical correlations.

where xit is a d × 1 vector of regressors; 𝜷 is a d × 1 vector of unknown coefficients. The
regression noise 𝜀it has a factor structure with unknown loadings and factors, regarded as an
interactive effect of the individual and time effects. In the model, the only observables are
(Yit, xit). This model has been considered by many researchers, such as Ahn et al. (2001),
Pesaran (2006), Bai (2009), and Moon and Weidner (2010), and has broad applications in
social sciences. For example, in the income studies, Yit represents the income of individual i at
age t, and xit is a vector of observable characteristics that are associated with income. Here bi
represents a vector of unmeasured skills, such as innate ability, motivation, and hardworking;
f t is a vector of unobservable prices for the unmeasured skills, which can be time-varying.

The goal is to estimate the structural parameter 𝜷, whose dimension is fixed. Because the
regressor and factor can be correlated, simply regressing Yit on xit is not consistent. Let Xt =
(x1t,… , xNt)′. The least-squares estimator of 𝜷 is

̂𝜷 = arg minmin
B,f t

T∑
t=1

(Yt − Xt𝜷 − Bf t)′W(Yt − X′
t𝜷 − Bf t), (6.39)

with a high-dimensional weight matrix W. In particular, it allows a consistent estimator for
𝚺−1

u as the optimal weight matrix, which takes into account both cross-sectional correlation and
heteroscedasticity of uit over i. The minimization is subjected to the constraint 1

T

∑T
t=1 f tf

′
t∕T =

I and B′WB being diagonal.
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The estimated 𝜷 for each given (B, {f t}) is simply

𝜷(B, {f t}) =

(
T∑

t=1

X′
tWXt

)−1 T∑
t=1

X′
tW(Yt − Bf t).

On the other hand, given 𝜷, the variable Yt − Xt𝜷 has a factor structure. Hence the esti-
mated (B, f t) are the weighted principal components estimators: let X( ̂𝜷) be an N × T matrix
X( ̂𝜷) = (X1

̂𝜷,… ,XT
̂𝜷). The columns of the T × r matrix ̂F∕

√
T = (̂f 1,… ,

̂f T )′∕
√

T are the
eigenvectors corresponding to the largest r eigenvalues of (Y′ − X( ̂𝜷))′W(Y′ − X( ̂𝜷)), and
̂B = T−1(Y′ − X( ̂𝜷)) ̂F. Therefore, given (B, f t), we can estimate 𝜷, and given 𝜷, we can esti-
mate (B, f t). So ̂𝜷 can be simply obtained by iterations, with an initial value. The inversion
(
∑T

t=1 X′
tWXt)−1 does not update during iterations.

6.5.2.1 Optimal Weight Matrix

To present the inferential theory of ̂𝜷, additional notation are needed. Rearrange the design
matrix

Z = (X11,… ,X1T ,X21,… ,X2T ,… ,XN1,… ,XNT )′,NT × dim (𝜷).

Let
AW = [W − WB(B′WB)−1B′W]⊗ (I − F(F′F)−1F′∕T).

Under regularity conditions, Bai and Liao (2013) showed that√
NT( ̂𝜷 − 𝜷)→dN (0,VW),

where, for 𝚺u = Cov(ut),

VW = plimN,T→∞(
1

NT
Z′AWZ)−1 1

NT
Z′AW(𝚺u ⊗ I)AWZ(

1
NT

Z′AWZ)−1

assuming the right-hand side converges in probability.
It is not difficult to show that W∗ = 𝚺−1

u is the optimal weight matrix, in the sense that
VW − VW∗ is semipositive definite for all positive definite weight matrix W. With W = W∗,
the asymptotic variance of ̂𝜷 is

VW∗ = plimN,T→∞ = (
1

NT
Z′AW∗Z)−1

.

Assuming 𝚺u to be sparse, one can estimate W∗ based on an initial estimator of 𝜷. Specifically,
define ̂𝜷0 as in (6.39) with W = I, which is the estimator used in Bai (2009) and Moon and
Weidner (2010). Apply the singular value decomposition to

1
T

T∑
t=1

(Yt − Xt
̂𝜷0)(Yt − Xt

̂𝜷0)′ =
N∑

i=1

𝜈i𝝃i𝝃
′
i ,
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where (𝜈j, 𝝃j)Nj=1 are the eigenvalues–eigenvectors of 1
T

∑T
t=1(Yt − Xt

̂𝜷0)(Yt − Xt
̂𝜷0)′ in a

decreasing order such that 𝜈1 ≥ 𝜈2 ≥ … ≥ 𝜈N . Then ̂𝚺u = (Σ̂u,ij)N×N ,

Σ̂u,ij =
{

R̃ii, i = j
thij(R̃ij), i ≠ j

, R̃ij =
N∑

k=r+1

𝜈k𝜉ki𝜉kj,

where thij(⋅) is the same thresholding function. The optimal weight matrix W∗ can then be
estimated by ̂𝚺−1

u , and the resulting estimator ̂𝜷 achieves the asymptotic variance VW∗ .

6.5.3 Numerical Illustrations

We present a simple numerical example to compare the weighted principal components with
the popular methods in the literature. The idiosyncratic error terms are generated as follows:
let {𝜖it}i≤N,t≤T be i.i.d. N (0, 1) in both t, i. Let

u1t = 𝜖1t, u2t = 𝜖2t + a1𝜖1t, u3t = 𝜖3t + a2𝜖2t + b1𝜖1t,

ui+1,t = 𝜖i+1,t + ai𝜖it + bi−1𝜖i−1,t + ci−2𝜖i−2,t,

where {ai, bi, ci}N
i=1 are i.i.d. N (0, 1). Then 𝚺u is a banded matrix, with both cross-sectional

correlation and heteroscedasticity. Let the two factors {f1t, f2t} be i.i.d. N (0, 1), and
{bi,1, bi,2}i≤N be uniform on [0, 1].

6.5.3.1 Pure Factor Model

Consider the pure factor model Yit = bi1f1,t + bi,2f2t + uit. Estimators based on three weight
matrices are compared: PC using W = I; HWPC using W = diag(𝚺u)−1 and EWPC using
W = 𝚺−1

u . Here 𝚺u is estimated using the POET estimator. The smallest canonical correlation
(the larger the better) between the estimators and parameters are calculated, as an assessment
of the estimation accuracy. The simulation is replicated 100 times, and the average canoni-
cal correlations are reported in Table 6.5. The mean squared error of the estimated common
components are also compared.

We see that the estimation becomes more accurate when we increase the dimensionality.
HWPC improves the regular PC, while the EWPC gives the best estimation results.

6.5.3.2 Interactive Effects

Adding a regression term, we consider the panel data model with interactive effect: Yit = x′it𝜷 +
bi1f1,t + bi,2f2t + uit, where the true 𝜷 = (1, 3)′. The regressors are generated to be dependent
on ( f t,bi):

xit,1 = 2.5bi1f1,t − 0.2bi2f2,t − 1 + 𝜂it,1, xit,2 = bi1f1,t − 2bi2f2,t + 1 + 𝜂it,2

where 𝜂it,1 and 𝜂it,2 are independent i.i.d. standard normal.
Both methods, PC (Bai, 2009; Moon and Weidner, 2010) and WPC with W = ̂𝚺−1

u , are
carried out to estimate 𝜷 for the comparison. The simulation is replicated 100 times; results
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Table 6.6 Method comparison for the panel data with interactive effects (from Bai and Liao, 2013)

𝛽1 = 1 𝛽2 = 3

Mean Normalized SE Mean Normalized SE

T N WPC PC WPC PC WPC PC WPC PC

100 100 1.002 1.010 0.550 1.418 3.000 3.003 0.416 1.353
100 150 1.003 1.007 0.681 1.626 2.999 3.000 0.611 1.683
100 200 1.002 1.005 0.631 1.800 3.000 3.000 0.774 1.752
150 100 1.003 1.006 0.772 1.399 3.000 2.999 0.714 1.458
150 150 1.001 1.005 0.359 1.318 3.000 3.001 0.408 1.379
150 200 1.001 1.003 0.547 1.566 3.000 3.000 0.602 1.762

“Mean” is the average of the estimators; “Normalized SE” is the standard error of the estimators multi-

plied by
√

NT .

are summarized in Table 6.6. We see that both methods are almost unbiased, while the efficient
WPC indeed has significantly smaller standard errors than the regular PC method in the panel
model with interactive effects.

6.6 Conclusions

Large covariance and precision (inverse covariance) matrix estimations have become funda-
mental problems in multivariate analysis that find applications in many fields, ranging from
economics and finance to biology, social networks, and health sciences.

We introduce two efficient methods for estimating large covariance matrices and preci-
sion matrices. The introduced precision matrix estimator assumes the precision matrix to be
sparse, which is immediately applicable for Gaussian graphical models. It is tuning-parameter
insensitive, and simultaneously achieves the minimax optimal rates of convergence in preci-
sion matrix estimation under different matrix norms. On the other hand, the estimator based
on factor analysis imposes a conditional sparsity assumption. Computationally, our proce-
dures are significantly faster than existing methods. Both theoretical properties and numerical
performances of these methods are presented and illustrated. In addition, we also discussed
several financial applications of the proposed methods, including risk management, testing
high-dimensional factor pricing models. We also illustrate how the proposed covariance esti-
mators can be used to improve statistical efficiency in estimating factor models and panel data
models.
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7.1 Introduction

Understanding and measuring the inherent uncertainty in market volatility are crucial for port-
folio optimization, risk management, and derivatives trading. The problem is made difficult
since volatility is not directly observed. Rather, volatility is a statistic of the observable returns
of, for example, a stock, and so estimates of it are at best noisy. Among the major empiri-
cal challenges have been separating contributions of diffusive and jump components of log
returns, typical timescales of fluctuation, and memory effects. Until recently, data were lim-
ited to low frequencies, typically daily. The availability of high-frequency data over the past
20 years brings with it issues of deciphering market microstructure effects such as the bid–ask
bounce, which contaminate the potential usefulness of such large datasets, and we refer to the
recent book by Aït-Sahalia and Jacod (2014) for an overview of the difficulties.

The major problem that has been the driver of stochastic volatility models is the valuation
and hedging of derivative securities. This market grew in large part from the landmark paper by
Black and Scholes (1973), which showed how to value simple options contracts when volatility
is constant. Even at the time of their paper, Black and Scholes realized that the constant volatil-
ity assumption was a strong idealization. In an empirical paper by Black and Scholes (1972),
the authors tested their option price formulas and concluded: “we found that using past data to
estimate the variance caused the model to overprice options on high-variance stocks and under-
price options on low-variance stocks.” Indeed the overwhelming evidence from time-series
data reveals that volatility exhibits unpredictable variation. In addition, as we will describe
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in this chapter, option prices exhibit a significant departure from the Black–Scholes (constant
volatility) theory, the implied volatility skew, which can be explained by allowing volatility to
vary randomly in time.

A second important problem is portfolio optimization: namely, how to optimally invest
capital between a risky stock and a riskless bank account. In a continuous time stochastic
model with constant volatility, the pioneering work was by Robert Merton (Merton, 1969,
1971; reprinted in Merton, 1992). Since then, understanding the effect of volatility uncer-
tainty, stochastic growth rate, transaction costs, price impact, illiquidity, and other frictions on
the portfolio choice problem has generated considerable research. Here, we will focus on the
effect of stochastic volatility and present some new results in Section 7.3.

The increased realism obtained by allowing volatility to be stochastic comes with increased
computational difficulties. Moreover, there is no broad consensus concerning how to best
model volatility. Here, we will discuss some computationally efficient approaches, focusing
particularly on asymptotic approximations.

7.1.1 Options and Implied Volatility

The most liquidly traded derivatives contracts are call and put options, which give the option
holder the right to buy (in the case of a call) or sell (in the case of a put) one unit of the
underlying security at a fixed strike price K on a fixed expiration date T . Here we are focusing
specifically on European-style options (i.e., no early exercise), which are typically traded
on indices such as the S&P 500. If St represents the price of a stock or index at time t,
then a European-style derivative has a payoff at time T , which is a function h of ST . In
the case of calls and puts, the payoff functions are h(S) = (S − K)+ and h(S) = (K − S)+,
respectively.

7.1.1.1 Black–Scholes model

In the Black–Scholes model, the stock price S is a geometric Brownian motion described by
the following stochastic differential equation (SDE):

dSt

St
= 𝜇 dt + 𝜎 dWt, (7.1)

where W is a standard Brownian motion with respect to a historical (or real-world, or physical)
probability measure ℙ. Here, the parameters are the expected growth rate 𝜇 and the volatility
𝜎, both assumed constant. The remarkable finding of Black and Scholes (1973) is that the
no-arbitrage price of an option does not depend on 𝜇, and so, to price an option, the only
parameter that needs to be estimated from data is the volatility 𝜎. Unless otherwise stated, we
shall assume throughout this article that interest rates are zero.

It will be convenient to introduce the following notation:

𝜏 ∶= T − t, x ∶= log St, k ∶= log K,

where t is the current time; and K and T are the strike and expiration date, respectively, of
a call or put option. Then, for fixed (t,T , x, k), the Black–Scholes pricing formula for a call
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option with time to expiration 𝜏 > 0 is given by

uBS(𝜎) ∶= exN (d+(𝜎)) − ekN (d−(𝜎)), d±(𝜎) ∶=
1

𝜎

√
𝜏

(
x − k ±

𝜎
2
𝜏

2

)
, (7.2)

where N is the CDF of a standard normal random variable, and we have stressed the volatility
argument 𝜎 in the notation.

It turns out that the Black–Scholes price (7.2) can be expressed as the expected payoff of
the option, but where the expectation is taken with respect to a different probability measure
ℚ under which the stock price is a martingale (that is, it is a pure fluctuation process with no
trend or growth rate). This means that there is a so-called risk-neutral world in which the stock
price follows the dynamics

dSt

St
= 𝜎 dWℚ

t ,

where Wℚ is a Brownian motion under ℚ, and the call option price (7.2) can be expressed as
the conditional expectation

uBS(𝜎) = 𝔼ℚ[(ST − K)+ ∣ log St = x],

where 𝔼ℚ denotes that the expectation is taken under the probability measure ℚ.

7.1.1.2 Implied Volatility

The implied volatility of a given call option with price u (which is either observed in the market
or computed from a model) is the unique positive solution I of

uBS(I) = u. (7.3)

It is the volatility parameter that has to be put into the Black–Scholes formula to match the
observed price u.

Note that the implied volatility I depends implicitly on the maturity date T and the log strike
k as the option price u will depend on these quantities. The map (T , k) → I(T , k) is known as
the implied volatility surface. If market option prices reflected Black–Scholes assumptions, I
would be constant and equal to the stock’s historical volatility 𝜎. However, in equities data,
the function I(T , ⋅) exhibits downward-sloping behavior in k, whose slope varies with the
option maturities T , as illustrated in Figure 7.1. This downward slope is known as the implied
volatility skew.

These features of the implied volatility surface can be reproduced by enhancing the
Black–Scholes model (7.1) with stochastic volatility and/or jumps. One focus of this chapter
will be to survey some approaches taken to capturing the implied volatility skew.

7.1.2 Volatility Modeling

While the overwhelming evidence from time-series and option price data indicates that the
volatility 𝜎 in (7.1) should be allowed to vary stochastically in time:

dSt

St
= 𝜇 dt + 𝜎t dWt,

there is no consensus as to how exactly the (stochastic) volatility 𝜎t should be modeled.
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Figure 7.1 Implied volatility from S&P 500 index options on May 25, 2010, plotted as a function of
log-moneyness to maturity ratio: (k − x)∕(T − t). DTM, days to maturity.
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7.1.2.1 No-arbitrage Pricing and Risk-Neutral Measure

In standard option-pricing theory, it is assumed that markets do not admit arbitrage. No arbi-
trage pricing implies that all traded asset prices (after discounting) are martingales under some
probability measure ℚ, typically referred to as a risk-neutral measure. Consequently, the price
ut of an option at time t with payoff 𝜑(ST ) at time T is given by

ut = 𝔼ℚ[𝜑(ST )|F t], (7.4)

where F t is the history of the market up to time t. Typically there are nontraded sources of
randomness such as jumps or stochastic volatility. As a result, there exist infinitely many
risk-neutral measures. The nonuniqueness of these measures is often referred to as market
incompleteness, meaning not every derivative asset can be perfectly hedged. In practice, one
assumes that the market has chosen a specific risk-neutral measure, which is consistent with
observed option prices.

In what follows, we will model asset dynamics under a unique risk-neutral pricing measure
ℚ, which we assume has been chosen by the market. Under ℚ, we have

St = eXt
, dXt = −

1
2
𝜎

2
t dt + 𝜎tdWℚ

t , (7.5)

which describes the dynamics of Xt = log St. In the rest of this section, we review some of the
most common models of volatility and discuss some of their advantages and disadvantages.

7.1.2.2 Local Volatility Models

In local volatility (LV) models, the volatility 𝜎t of the underlying is modeled as a deterministic
function 𝜎(⋅, ⋅) of time t, and the time-t value of the underlying Xt. That is,

dXt = − 1
2𝜎

2(t,Xt) dt + 𝜎(t,Xt)dWℚ
t , (local volatility)

Typically, one assumes that the function 𝜎(t, ⋅) increases as x decreases in order to capture the
leverage effect, which refers to the tendency for the value of an asset to decrease as its volatility
increases.

One advantage of local volatility models is that markets remain complete, meaning that
derivatives written on S can be hedged perfectly – just as in the Black–Scholes model. While
market completeness is convenient from a theoretical point of view, it is not necessarily a
realistic property of financial markets. Indeed, if markets are complete, then one can ask: why
do we need derivatives?

Another advantage of local volatility models is that they can provide a very tight fit to option
prices quoted on the market. In fact, Dupire (1994) shows that there exists a local volatility
model that can exactly match option prices quoted on the market and that there is an explicit
formula for how to construct this model from observed call and put prices under the assumption
that they can be interpolated across continuous strikes and maturities. However, a tight fit must
be balanced with stability: local volatility models are notoriously bad at providing stability and
typically need to be recalibrated hourly.
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7.1.2.3 Stochastic Volatility Models

In a stochastic volatility (SV) model, promoted in the late 1980s by Hull and White (1987),
Scott (1987), and Wiggins (1987), the volatility 𝜎t of the underlying is modeled as a determin-
istic function 𝜎(⋅) of some auxiliary process Y , which is usually modeled as a diffusion:

dXt = −
1
2
𝜎

2(Yt) dt + 𝜎(Yt) dWℚ
t ,

dYt = 𝛼(Yt) dt + 𝛽(Yt) dBℚ
t , (stochastic volatility) (7.6)

d⟨Wℚ
,Bℚ⟩t = 𝜌 dt,

with |𝜌| < 1. Here, Bℚ is a Brownian motion that is correlated with Wℚ. One typically takes
the correlation 𝜌 to be negative in order to capture the empirical observation that when volatil-
ity goes up, stock prices tend to go down, which is called the leverage effect. In a single-factor
stochastic volatility setting such as that described by (7.6), derivatives written on S cannot be
perfectly hedged by continuously trading a bond and the underlying S alone. However, a deriva-
tive written on S can be perfectly replicated by continuously trading a bond, the underlying S,
and a single option on S. Thus, assuming options can be traded continuously can complete the
market. However, as transaction costs on options are much higher than on stocks, and as their
liquidity is typically lower, this assumption typically is not made. Unlike the local volatility
case, there is no explicit formula for constructing Y dynamics and a volatility function 𝜎(⋅) so
that model-induced option prices fit observed market prices exactly.

It is common to assume that the volatility driving process Y is mean-reverting, or ergodic,
meaning there exists a distribution Π such that the ergodic theorem holds:

lim
t→∞

1
t ∫

t

0
g(Ys)ds =

∫
g(y)Π(dy),

for all bounded functions g.
Equation (7.6) actually refers specifically to one-factor stochastic volatility models. One can

always introduce another auxiliary process Z, and model the volatility 𝜎t as a function 𝜎(⋅, ⋅) of
both Y and Z. If S, Y , and Z are driven by three distinct Brownian motions, then continuously
trading a bond, the underlying S, and two options on S would be required to perfectly hedge
further options on S. Multifactor stochastic volatility models have the ability of fit option prices
better than their one-factor counterparts. But, each additional factor of volatility brings with
it additional computational challenges. Multifactor and multiscale stochastic volatility models
are discussed at length in Fouque et al. (2011).

7.1.2.4 Local-Stochastic Volatility Models

As the name suggests, local-stochastic volatility (LSV) models combine features of both local
volatility and stochastic volatility models by modeling the volatility 𝜎t as a function 𝜎(⋅, ⋅, ⋅) of
time t, the underlying X, and an auxiliary process Y (possibly multidimensional). For example,

dXt = −
1
2
𝜎

2(t,Xt,Yt) dt + 𝜎(t,Xt,Yt) dWℚ
t ,

dYt = f (t,Xt,Yt) dt + 𝛽(t,Xt,Yt) dBℚ
t , (local-stochastic volatility)

d⟨Wℚ
,Bℚ⟩t = 𝜌 dt, (7.7)
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where |𝜌| < 1. Note that the class of models described by (7.7) nests all LV models and all
(one-factor) SV models. However, while LSV models offer more modeling flexibility than LV
or SV models separately, these models also present new computational challenges. Indeed,
while there exist LV and SV models for which option prices can be computed in closed form
(or semiclosed form, e.g., up to Fourier inversion), explicit formulas for option prices are
available in an LSV setting only when 𝜌 = 0. We remark that having a closed-form formula
or a fast approximation is crucial for the inverse problem of calibrating an LSV model from
observed option prices.

7.1.2.5 Models with Jumps

Some authors argue that diffusion models of the form (7.5) are not adequate to capture the
complex dynamics of stock price processes because diffusion models do not allow stock prices
to jump. Discontinuities in the stock price process can be modeled by adding a jump term dJt
to the process (7.5) as follows:

dXt =
(
−

1
2
𝜎

2
t − 𝜆

∫
(ez − 1)F(dz)

)
dt + 𝜎dWℚ

t + dJt,

and this type of model dates back to Merton (1976). Here, jumps arrive as a Poisson process
with intensity 𝜆 and have distribution F, and the drift of X is compensated to ensure that S = eX

is a martingale under ℚ. As with SV models, jumps render a market incomplete. Adding jumps
also to volatility can help fit the strong implied volatility smile that is commonly observed for
short maturity options, and we refer to Bakshi et al. (1997) for an analysis.

7.1.2.6 ARCH and GARCH Models

Although our focus will be on the continuous-time models, it is worth mentioning that
discrete-time models for stock returns are widely studied in econometrics literature. A large
class of discrete-time models are the autoregressive conditional heteroscedasticity (ARCH)
processes introduced by Engle (1982), later generalized under the name GARCH. The
discrete-time models that are closest to the type of continuous-time stochastic volatility
models (7.6) driven by diffusions are the EGARCH models developed in Nelson (1991,
1990). Those papers also discuss convergence of the discrete-time EGARCH process to an
exponential Ornstein–Uhlenbeck continuous-time stochastic volatility model.

7.2 Asymptotic Regimes and Approximations

Given a model and its parameters, computing expectations of the form (7.4) one time is
straightforward using Monte Carlo methods or a numerical solution of the associated pricing
partial integro-differential equation (PIDE). However, when the computation is part of
an iterative procedure to calibrate the model to the observed implied volatility surface, it
becomes important to have a fast method of computing option prices or model-induced implied
volatilities. As a result, a number of different efficient approximation methods have developed.

Broadly speaking, there are two methods of setting up asymptotic expansions for option
pricing and implied volatility. In contract asymptotics, one considers extreme regimes specific
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to the option contract, in other words, large or small time-to-maturity (T − t), or large or small
strikes K. In the model asymptotics approach, one views the complicated incomplete market
model as a perturbation around a more tractable model, often the Black–Scholes model (7.1).

7.2.1 Contract Asymptotics

The foundational papers in this approach appeared in 2004. The main result from Lee (2004),
commonly referred to as the moment formula, relates the implied volatility slope at extreme
strikes to the largest finite moment of the stock price. We refer to the recent book by Gulisas-
hvili (2012) for an overview of this and related asymptotics.

The approach pioneered by Berestycki et al. (2004) uses large-deviation calculations for
the short-time regime. The regime where the time-to-maturity is large is studied by Tehranchi
(2009). However, for the rest of this chapter, we concentrate on model asymptotics as they
are adaptable to other option contracts and, moreover, are amenable to nonlinear portfolio
optimization problems, as we discuss in Section 7.3.

7.2.2 Model Asymptotics

We will present the analysis in terms of the log-stock price Xt = log St, and consider a Euro-
pean option with payoff 𝜑(XT ) at time T , where 𝜑(x) = h(ex). There may be other factors such
as stochastic volatility driving the stock price dynamics, and we denote these by the (possibly
multi-dimensional) process Y . If (X,Y) is (jointly) a Markov process, then the time t price
u(t, x, y) of the European option is an expectation of the form

u(t, x, y) = 𝔼ℚ[𝜑(XT )|Xt = x,Yt = y].

Here, we are using the Markov property of (X,Y) to replace the filtration F t in (7.4) with the
time-t values of (X,Y).

Under mild conditions on the processes (X,Y) and the payoff function 𝜑, the function
u(t, x, y) is sufficiently smooth to be the solution of the Kolmogorov backward equation (KBE)

(𝜕t +A(t))u = 0, u(T , x) = 𝜑(x), (7.8)

where the operatorA(t) is the generator of (X,Y) (which may have t-dependence from the coef-
ficients of (X,Y)). The operator A(t) is, in general, a second-order partial integro-differential
operator. Unfortunately, equation (7.8) rarely has a closed-form solution – especially when we
include realistic features such as jumps and stochastic volatility. As such, one typically seeks
an approximate solution to (7.8). We will discuss an approach to this using perturbation theory
(also referred to as asymptotic analysis).

Perturbation theory is a classical tool developed to solve problems arising in physics
and engineering. We describe its use here to find an approximate solution to (typically) a
PIDE starting from the exact solution of a related PIDE. More specifically, suppose the
integro-differential operator A(t) in (7.8) can be written in the form

A(t) =
∞∑

n=0

𝜀
nAn(t), (7.9)
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where each An(t) in the sequence (An(t)) is an integro-differential operators, and 𝜀 > 0 is a
(typically small) parameter. Formally, one seeks an approximate solution to (7.8) by expanding
the function u as a power series in the parameter 𝜀

u =
∞∑

n=0

𝜀
nun. (7.10)

Inserting the expansion (7.9) for A(t) and the expansion (7.10) for u into the PIDE (7.8), and
collecting like powers of 𝜀, one finds

O(1) ∶ (𝜕t +A0(t))u0 = 0, u0(T , x, y) = 𝜑(x),

O(𝜀) ∶ (𝜕t +A0(t))u1 = −A1(t)u0, un(T , x, y) = 0,

⋮ ⋮ ⋮

O(𝜀n) ∶ (𝜕t +A0(t))un = −
∞∑

k=1

Ak(t)un−k, un(T , x, y) = 0.

The approximating sequence of functions (un) is then found by solving the above nested
sequence of PIDEs.

This method is most useful when the fundamental solution Γ0 (also referred to as Green’s
function), corresponding to the operator A0(t), is available in closed form. It is the solution of

(𝜕t +A0(t))Γ0(t, x, y;T , 𝜉, 𝜔) = 0, Γ0(T , x, y;T , 𝜉, 𝜔) = 𝛿(x − 𝜉)𝛿(y − 𝜔),

where 𝛿(⋅) is the Dirac delta function (or point mass at zero).
Upon finding Γ0, the approximating sequence of functions (un) can be written down directly:

u0(t, x, y) = P0(t,T)𝜑(x) ∶=
∫

d𝜉d𝜔 Γ0(t, x, y;T , 𝜉, 𝜔)𝜑(𝜉), (7.11)

un(t, x, y) =
∫

T

t
dt1P0(t, t1)

n∑
k=1

Akun−k(t1, x, y). (7.12)

where the operator P0(t,T) is referred to as the semigroup generated by A0(t).
Finding an appropriate decomposition of the generator A(t) =

∑∞
n=0 An(t) is a bit of an art.

In general, the most appropriate decomposition will depend strongly on the underlying process
X (from which A(t) is derived). As a starting point, it will help to identify operators A0 for
which the fundamental solution Γ0 can be written in closed form or semiclosed form, and we
shall discuss some examples in Section 7.2.4.

7.2.3 Implied Volatility Asymptotics

Models are typically calibrated to implied volatilities rather than to prices directly. As such,
it is useful to have closed-form approximations for model-induced implied volatilities. In this
section, we will show how to translate an expansion for option prices into an expansion for
implied volatilities. Throughout this section, we fix a model for X = log S, a time t, a maturity
date T > t, the initial values Xt = x, and a call option payoff 𝜑(XT ) = (eXT − ek)+. Our goal
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is to find the implied volatility for this particular call option. To ease notation, we will sup-
press much of the dependence on (t,T , x, k). However, the reader should keep in mind that the
implied volatility of the option under consideration does depend on (t,T , x, k), even if this is
not explicitly indicated.

Assume that the option price u has an expansion of the form

u = u0 +
∑
n=1

𝜀
nun, where u0 = uBS(𝜎0), for some 𝜎0 > 0. (7.13)

We wish to find the implied volatility I corresponding to u, which is the unique positive solution
of (7.3). To find the unknown implied volatility I, we expand it in powers of 𝜀 as follows:

I = I0 + E𝜀

,where E𝜀 =
∞∑

n=1

𝜀
nIn.

Expanding uBS(I) about the point I0, we find

uBS(I) = uBS(I0 + E𝜀)

= uBS(I0) +
∞∑

n=1

(E𝜀)n

n!
𝜕
𝜎
uBS(I0)

= uBS(I0) + 𝜀I1𝜕𝜎uBS(I0) + 𝜀
2
(

I2𝜕𝜎 +
1
2!

I2
1𝜕

2
𝜎

)
uBS(I0)

+ 𝜀
3
(

I3𝜕𝜎 +
1
2!

2I1I2𝜕
2
𝜎
+

1
3!

I3
1𝜕

3
𝜎

)
uBS(I0) + · · · . (7.14)

Inserting the expansion (7.13) for u and the expansion (7.14) for uBS(I) into equation (7.3),
and collecting like powers of 𝜀, we obtain

O(1) ∶ u0 = uBS(I0),

O(𝜀) ∶ u1 = I1𝜕𝜎uBS(I0),

O(𝜀2) ∶ u2 =
(

I2𝜕𝜎 +
1
2!

I2
1𝜕

2
𝜎

)
uBS(I0)

O(𝜀3) ∶ u3 =
(

I3𝜕𝜎 +
1
2!

2I1I2𝜕
2
𝜎
+

1
3!

I3
1𝜕

3
𝜎

)
uBS(I0).

Using u0 = uBS(𝜎0), we can solve for the sequence (In) recursively. We have

O(1) ∶ I0 = 𝜎0, (7.15)

O(𝜀) ∶ I1 =
1

𝜕
𝜎
uBS(I0)

u1,

O(𝜀2) ∶ I2 =
1

𝜕
𝜎
uBS(I0)

(
u2 −

(
1
2!

I2
1𝜕

2
𝜎

)
uBS(I0)

)
O(𝜀3) ∶ I3 =

1

𝜕
𝜎
uBS(I0)

(
u3 −

(
1
2!

2I1I2𝜕
2
𝜎
+

1
3!

I3
1𝜕

3
𝜎

)
uBS(I0)

)
. (7.16)
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Note that the implied volatility expansion involves both model-independent and
model-dependent terms:

model independent:
𝜕

n
𝜎
uBS(I0)

𝜕
𝜎
uBS(I0)

model dependent:
un

𝜕
𝜎
uBS(I0)

. (7.17)

The model-independent terms are always explicit. For example, using (7.2), a direct compu-
tation reveals

𝜕
2
𝜎
uBS(𝜎)

𝜕
𝜎
uBS(𝜎)

=
(k − x)2

t𝜎3
−

t𝜎
4
,

𝜕
3
𝜎
uBS(𝜎)

𝜕
𝜎
uBS(𝜎)

= −
t
4
+

(k − x)4

t2
𝜎

6
−

3(k − x)2

t𝜎4
−

(k − x)2

2𝜎2
+

t2
𝜎

2

16
.

Higher order terms are also explicit. Whether or not the model-dependent terms in (7.17) can be
computed explicitly (i.e., meaning without numerical integration or special functions) depends
on the specific form the sequence (un) takes.

7.2.4 Tractable Models

We say that a model X is tractable if its generator A0(t) admits a closed-form (or semiclosed
form) fundamental solution Γ0. A large class of tractable models are the exponential Lévy
models. In this class, a traded asset S = eX is described by the following Lévy–Itô SDE:

dXt = 𝜇 dt + 𝜎dWℚ
t +

∫ℝ
z dÑt(dz). (7.18)

Here, Wℚ is a standard Brownian motion and Ñ is an independent compensated Poisson ran-
dom measure:

dÑt(dz) = dNt(dz) − 𝜈(dz)dt.

The last term in (7.18) can be understood as follows: for any Borel set A, the process N(A) is
a Poisson process with intensity 𝜈(A). Thus, the probability that X experiences a jump of size
z ∈ A in the time interval [t, t + dt) is 𝜈(A)dt. In order for S to be a martingale, the drift 𝜇 must
be given by

𝜇 = −
1
2
𝜎

2 −
∫ℝ

𝜈(dz)(ez − 1 − z).

The generator A0 of X is given by

A0 = 𝜇𝜕x +
1
2
𝜎

2
𝜕

2
xx +

∫
𝜈(dz)(𝜃z − 1 − z𝜕x), (7.19)

where the operator 𝜃z is a shift operator: 𝜃z f (x) = f (x + z).
When X has no jump component (i.e., when 𝜈 ≡ 0), the generator A0 has a fundamental

solution Γ0 that can be written in closed form as a Gaussian kernel:

Γ0(t, x; T , y) =
1√

2𝜋𝜎2(T − t)
exp

(
−
(x − y + 𝜇(T − t))2

2𝜎2(T − t)

)
.
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More generally, when jumps are present, the generator A0 has a fundamental solution Γ0,
which is available in semiclosed form as a Fourier transform:

Γ0(t, x; T , y) =
1

2𝜋 ∫
d𝜉 ei𝜉(x−y)+(T−t)Φ0(𝜉)

, (7.20)

where

Φ0(𝜉) = i𝜇𝜉 −
1
2
𝜎

2
𝜉

2 +
∫

𝜈(dz)(ei𝜉z − 1 − i𝜉z).

The function Φ0 is referred to as the characteristic exponent of X, since it satisfies

𝔼ℚ[ei𝜉XT |Xt = x] = ei𝜉x+(T−t)Φ0(𝜉)
.

Using (7.11) and (7.20), we can express the action of the semigroup operator P0(t,T) on a
general function 𝜓 as follows:

P0(t,T)𝜓(x) =
∫

dy Γ0(t, x; T , y)𝜓(y) =
1

2𝜋 ∫
dy

∫
d𝜉 ei𝜉(x−y)+(T−t)Φ0(𝜉)

𝜓(y)

=
1

2𝜋 ∫
d𝜉 ei𝜉x+(T−t)Φ0(𝜉)

�̂�(𝜉),

where �̂� is the Fourier transform of 𝜓 :

�̂�(𝜉) ∶=
∫

dy e−i𝜉y
𝜓(y).

Because the semigroup operator P0(t,T) corresponding to A0 is well understood in the
exponential Lévy setting, if one can write the generator A of a process X as A =

∑∞
n=0 𝜀

nAn
with A0 given by (7.19), then one can use (7.11)–(7.12) to find approximate solutions to the
full pricing PIDE (𝜕t +A)u = 0.

7.2.5 Model Coefficient Polynomial Expansions

Model coefficient expansions are developed in a series of papers by Lorig et al. (2014, 2015a,
b, c, d). The authors’ method (which we shall henceforth refer to as LPP) can be used to find
closed-form asymptotic approximations for option prices and implied volatilities in a general
d-dimensional Markov setting. Here, for simplicity, we focus on two simple cases: (i) general
two-dimensional local-stochastic volatility (LSV) models, and (ii) general scalar Lévy-type
models.

7.2.5.1 LSV models

We consider a general class of models, in which an asset S = eX is modeled as the exponential
of a Markov diffusion process X that satisfies the SDEs

dXt = −
1
2
𝜎

2(Xt,Yt) dt + 𝜎(Xt,Yt) dWℚ
t ,

dYt = f (Xt,Yt) dt + 𝛽(Xt,Yt) dBℚ
t ,

d⟨Wℚ
,Bℚ⟩t = 𝜌 dt,
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where Wℚ and Bℚ are correlated Brownian motions. This is as in the model discussed in
Section 7.1.2.4 except we remove the explicit t-dependence in the coefficients for simplicity.
Note that the drift of X is − 1

2𝜎
2, which ensures that S = eX is a ℚ-martingale and so the stock

price is arbitrage free.
The generator A of X is given by

A = a(x, y)(𝜕2
xx − 𝜕x) + f (x, y)𝜕y + b(x, y)𝜕2

yy + c(x, y)𝜕2
xy, (7.21)

where we have defined

a(x, y) ∶=
1
2
𝜎

2(x, y), b(x, y) ∶=
1
2
𝛽

2(x, y), c(x, y) ∶= 𝜌𝜎(x, y)𝛽(x, y).

For general coefficients (𝜎, 𝛽, f ), there is no closed-form (or even semiclosed-form) expres-
sion of Γ, the fundamental solution corresponding to A. Thus, we seek a decomposition of
A =

∑∞
n=0 An for which the order-zero operatorA0 admits a closed-form fundamental solution

Γ0.
The LPP approach is to expand the coefficients of A in polynomial basis functions where

the zeroth-order terms in the expansion are constant. Specifically,

𝜒(x, y) =
∞∑

n=0
𝜒n(x, y), 𝜒 ∈ {a, b, c, f },

where 𝜒0 is a constant and 𝜒n(x, y) depends polynomially on x and y for every n ≥ 1. For
example, Taylor series:

𝜒n(x, y) =
n∑

k=0

X k,n−k(x − x̄)k(y − ȳ)n−k
, X k,n−k =

1
k!(n − k)!

𝜕
k
x𝜕

n−k
y 𝜒(x̄, ȳ), (7.22)

or Hermite polynomials:

𝜒n(x, y) =
n∑

k=0

X k,n−kHk,n−k(x, y), X k,n−k = ⟨Hk,n−k, 𝜒⟩⟨Hk,n−k, 𝜒⟩.
In the Taylor series example, (x̄, ȳ) is a fixed point in ℝ2. In the Hermite polynomial example,
the brackets ⟨⋅, ⋅⟩ indicate an L2 inner product with a Gaussian weighting. The Hermite poly-
nomials (Hn,m) form a complete basis in this space and (properly weighted) are orthonormal⟨Hn,m,Hi,j⟩ = 𝛿n,i𝛿m,j.

Upon expanding the coefficients of A in polynomial basis functions, one can formally write
the operator A as

A =
∞∑

n=0

An, with An =
n∑

k=0

Ak,n−k, (7.23)

where

Ak,n−k = ak,n−k(x, y)(𝜕2
xx − 𝜕x) + fk,n−k(x, y)𝜕y + bk,n−k(x, y)𝜕2

yy + ck,n−k(x, y)𝜕2
xy.

Note that the operator A in (7.23) is of the form (7.9) if one sets 𝜀 = 1.
Moreover, the order-zero operator

A0 = A0,0 = a0,0(𝜕2
xx − 𝜕x) + f0,0𝜕y + b0,0𝜕

2
yy + c0,0𝜕

2
xy.
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has a fundamental solution Γ0, which is a Gaussian density:

Γ0(t, x, y;T , 𝜉, 𝜔) =
1

2𝜋
√|C| exp

(
−

1
2
(𝜼 − m)TC−1(𝜼 − m)

)
, 𝜼 =

(
𝜉

𝜔

)
,

with covariance matrix C and mean vector m given by

C = (T − t)
(

2a0,0 c0,0
c0,0 2b0,0

)
, m =

(
x − (T − t)a0,0
y + (T − t)f0,0

)
.

Since Γ0 is available in closed form, one can use (7.11) and (7.12) to find u0 and the sequence
of functions (un)n≥1, respectively. After a bit of algebra, one can show that

un(t, x, y) = Lnu0(t, x, y), (7.24)

where the operator Ln is of the form

Ln =
∑
k,m

𝜂
(n)
k,m

(t, x, y)𝜕k
y𝜕

m
x (𝜕2

x − 𝜕x).

The precise form of the coefficients (𝜂(n)
k,m

) will depend on the choice of polynomial basis func-
tion. If the coefficients ofA are smooth and bounded, then the small-time-to-maturity accuracy
of the price approximation is

sup
x,y

|u(t, x, y) − ūn(t, x, y)| = O((T − t)(n+3)∕2), ūn(t, x, y) ∶=
n∑

k=0

uk(t, x, y).

The proof can be found in Lorig et al. (2015a).
The LPP price expansion also leads to closed-form expressions for implied volatility.

Indeed, for European call options, one can easily show that u0 = uBS(
√

2a0,0). Therefore, the
series expansion for u is of the form (7.13), and hence (I0, I1, I2, I3) can be computed using
(7.15)–(7.16). Moreover, the model-dependent terms (un∕𝜕𝜎uBS) appearing in (7.15)–(7.16)
can be computed explicitly with no numerical integration. This is due to the fact that un can
be written in the form (7.24). For details, we refer the reader to Lorig et al. (2015b).

Example 7.1 (Heston Model) Consider the Heston (1993) model, under which the
risk-neutral dynamics of X are given by

dXt = −
1
2

eYt dt + eYt∕2dWℚ
t ,

dYt =
(
(𝜅𝜃 −

1
2
𝛿

2)e−Yt − 𝜅

)
dt + 𝛿 e−Yt∕2dBℚ

t ,

d
⟨

Wℚ
,Bℚ⟩

t
= 𝜌 dt.

The generator of (X,Y) is given by

A =
1
2

ey(𝜕2
x − 𝜕x) +

(
(𝜅𝜃 −

1
2
𝛿

2)e−y − 𝜅

)
𝜕y +

1
2
𝛿

2e−y
𝜕

2
y + 𝜌 𝛿𝜕x𝜕y.
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Figure 7.2 Exact (solid) and approximate (dashed) implied volatilities in the Heston model. The horizontal axis is log-moneyness (k − x). Parameters:
𝜅 = 1.15, 𝜃 = 0.04, 𝛿 = 0.2, 𝜌 = −0.40 x = 0.0, y = log 𝜃.
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Thus, using (7.21), we identify

a(x, y) =
1
2

ey
, b(x, y) =

1
2
𝛿

2e−y
, c(x, y) = 𝜌𝛿, f (x, y) =

(
(𝜅𝜃 −

1
2
𝛿

2)e−y − 𝜅

)
.

We fix a time to maturity 𝜏 and log-strike k. Assuming a Taylor series expansion (7.22) of
the coefficients of A with (x̄, ȳ) = (x, y), the time t levels of (X,Y), one computes

I0 = ey∕2
,

I1 =
1
8

e−y∕2
𝜏(−𝛿2 + 2(−ey + 𝜃)𝜅 + ey

𝛿𝜌) +
1
4

e−y∕2
𝛿𝜌(k − x),

I2 =
−e−3y∕2

128
𝜏

2(𝛿2 − 2𝜃𝜅)2 +
ey∕2

96
𝜏

2(5𝜅2 − 5𝛿𝜅𝜌 + 𝛿
2(−1 + 2𝜌2))

+
e−y∕2

192
𝜏(−4𝜏𝜃𝜅2 − 𝜏𝛿

3
𝜌 + 2𝜏𝛿𝜃𝜅𝜌 + 2𝛿2(8 + 𝜏𝜅 + 𝜌

2))

+
1
96

e−3y∕2
𝜏𝛿𝜌(5𝛿2 + 2(ey − 5𝜃)𝜅 − ey

𝛿𝜌)(k − x) +
1
48

e−3y∕2
𝛿

2(2 − 5𝜌2)(k − x)2.

The expression for I3 is also explicit, but omitted for brevity. In Figure 7.2, we plot the
approximate implied volatility (I0 + I1 + I2 + I3) as well as the exact implied volatility I,
which can be computed using the pricing formula given in Heston (1993) and then inverting
the Black–Scholes formula numerically.

7.2.5.2 Lévy-type models

In this section, we explore how the LPP method can be applied to compute approximate option
prices in a one-dimensional Lévy-type setting. Specifically, we consider an asset S = eX , where
X is a scalar Lévy-type Markov process. Under some integrability conditions on the size and
intensity of jumps, every scalar Markov process on ℝ can be expressed as the solution of a
Lévy–Itô SDE of the form:

dXt = 𝜇(Xt)dt +
√

2a(Xt)dWℚ
t +

∫
zdÑt(Xt−, dz),

where Wℚ is a standard Brownian motion; and Ñ is a state-dependent compensated Poisson
random measure

dÑt(x, dz) = dNt(x, dz) − 𝜈(x, dz)dt.

Note that jumps are now described by a Lévy kernel 𝜈(x, dz), which is a Lévy measure for every
x ∈ ℝ. In order for S to be a martingale, the drift 𝜇 must be given by

𝜇(x) = −a(x) −
∫ℝ

𝜈(x, dz)(ez − 1 − z).

The generator A of X is

A = 𝜇(x)𝜕x + a(x)𝜕2
xx +

∫
𝜈(x, dz)(𝜃z − 1 − z𝜕x).
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For general drift 𝜇(x) variance a(x) and Lévy kernel 𝜈(x, dz), there is no closed-form (or
even semiclosed-form) expression for the fundamental solution Γ corresponding to A. Thus,
we seek a decomposition of generator A =

∑
nAn for which A0 has a fundamental solution

Γ0 available in semiclosed form.
Once again, the LPP approach of expanding the coefficients and Levy kernel of A in

polynomial basis functions will lead to the desired form for the expansion ofA. Specifically, let

𝜇(x) =
∞∑

n=0

𝜇n(x), a(x) =
∞∑

n=0

an(x), 𝜈(x, dz) =
∞∑

n=0

𝜈n(x, dz),

where 𝜇0(x) = 𝜇0; a0(x) = a0; and 𝜈0(x, dz) = 𝜈0(dz); and higher order terms 𝜇n(x), an(x), and
𝜈n(x, dz) depend polynomially on x. For example,

Taylor series: an(x) = 1
n!𝜕

n
x a(x̄)⋅(x − x̄)n,

Hermite polynomial: an(x) = ⟨Hn, a⟩⋅Hn(x),

and similarly for 𝜇 and 𝜈. Upon expanding the coefficients of A in polynomial basis functions,
one can formally write the operator A as A =

∑∞
n=0 An, where A0 is given by

A0 = 𝜇0𝜕x + a0𝜕
2
xx +

∫
𝜈0(dz)(𝜃z − 1 − z𝜕x), (7.25)

and each An for n ≥ 0 is of the form

An = 𝜇n(x)𝜕x + an(x)𝜕2
xx +

∫
𝜈n(x, dz)(𝜃z − 1 − z𝜕x).

Comparing (7.25) with (7.19), we see that A0 is the generator of a Lévy process. Thus, using
(7.20), the fundamental solution Γ0 corresponding to A0 can be written as a Fourier integral

Γ0(t, x; T , y) =
1

2𝜋 ∫
d𝜉 ei𝜉(x−y)+(T−t)Φ0(𝜉)

,

where

Φ0(𝜉) = i𝜇0𝜉 − a0𝜉
2 +

∫
𝜈0(dz)(ei𝜉z − 1 − i𝜉z).

Since Γ0 is available in closed form, one can use (7.11) and (7.12) to find u0 and un, respec-
tively. Explicit computations are carried out in Lorig et al. (2015c).

In this case, it is convenient to express un(t, x) as an (inverse) Fourier transform of ûn(t, x).
Defining

Fourier transform: ûn(t, 𝜉) = F[un(t, ⋅)](𝜉) ∶= ∫ dx e−i𝜉xun(t, x),
Inverse transform: un(t, x) = F−1[ûn(t, ⋅)](x) ∶= 1

2𝜋 ∫ dx ei𝜉xûn(t, 𝜉),

we have

ûn(t, 𝜉) =
n∑

k=1
∫

T

t
dt1 e(t1−t)Φ0(𝜉)

∫ℝd
0

𝜈k(i𝜕𝜉, dz)(ei𝜉z − 1 − i𝜉z)ûn−k(t1, 𝜉)

+
n∑

k=1
∫

T

t
dt1 e(t1−t)Φ0(𝜉)(𝜇k(i𝜕𝜉)(i𝜉)ûn−k(t1, 𝜉) + ak(i𝜕𝜉)(i𝜉)2ûn−k(t1, 𝜉)),
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where û0(t, 𝜉) is given by

û0(t, 𝜉) = ei𝜉x+(T−t)Φ0(𝜉)
�̂�(𝜉).

7.2.6 Small “Vol of Vol” Expansion

Lewis (2000) considers a stochastic volatility model of the form

dXt = −
1
2

Yt dt +
√

Yt dWℚ
t ,

dYt = 𝛼(Yt) dt + 𝜀𝛽(Yt) dBℚ
t ,

d⟨Wℚ
,Bℚ⟩t = 𝜌 dt.

The parameter 𝜀 is referred to as the volatility of volatility, or vol of vol for short. The generator
A of (X,Y) is given by

A = A0 + 𝜀A1 + 𝜀
2A2,

where

A0 =
y
2
(𝜕2

x − 𝜕x) + 𝛼(y)𝜕y, A1 = 𝜌

√
y𝛽(y)𝜕x𝜕y, A2 =

1
2
𝛽

2(y)𝜕2
y .

Thus, A is of the form (7.9). Moreover, the solution of

(𝜕t +A0)Γ0 = 0, Γ0(T , x, y;T , 𝜉) = 𝛿(x − 𝜉),

is given by a Gaussian

Γ0(t, x, y;T , 𝜉, 𝜁 ) =
1√

2𝜋𝜎2(t,T)
exp

(
−
(𝜉 − x − 𝜎

2(t,T)∕2)2

2𝜎2(t,T)

)
𝛿(𝜁 − 𝜂(t)),

where 𝜎
2(t,T) = ∫

T
t 𝜂(s) ds, and 𝜂(s) is the solution of the following ODE:

d𝜂(s)
ds = 𝛼(𝜂(s)), 𝜂(t) = y.

Since Γ0 is available in closed form up to finding 𝜂, one can use (7.11) and (7.12) to find u0
and the sequence of functions (un), respectively. In particular, for European calls, one finds

u0 = uBS(�̄�(t,T)), �̄�(t,T) =
√

𝜎
2(t,T)
T−t

As the order-zero price is equal to the Black–Scholes price, computed with volatility �̄�(t,T),
one can apply the implied volatility asymptotics of Section 7.2.3 to find approximate implied
volatilities. Explicit expressions for approximate implied vols are given in Lewis (2000) for
the case 𝛼(y) = 𝜅(𝜃 − y) and 𝛽(y) = y𝛾 .

7.2.7 Separation of Timescales Approach

In Fouque et al. (2000, 2011), the authors develop analytic price approximations for interest
rate, credit, and equity derivatives. The authors’ approach (henceforth referred to as FPSS)
exploits the separation of timescales that is observed in volatility time-series data. More
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specifically, the authors consider a class of multiscale diffusion models in which the volatility
of an underlying is driven by two factors, Y and Z, operating on fast and slow timescales,
respectively. Lorig and Lozano-Carbassé (2015) extend the FPSS method to models with
jumps. Here, for simplicity, we consider an exponential Lévy-type model with a single slowly
varying factor, which drives both the volatility and jump-intensity.

Consider a model for a stock S = eX , where X is modeled under the risk-neutral pricing
measure as the solution of the following Lévy–Itô SDE

dXt = 𝜇(Zt) dt + 𝜎(Zt) dWℚ
t +

∫ℝ
s dÑt(Zt−, ds),

dZt = (𝜀2c(Zt) − 𝜀 Γ(Zt) g(Zt)) dt + 𝜀 g(Zt) dBℚ
t , (risk-neutral measure ℚ)

d⟨Wℚ
,Bℚ⟩t = 𝜌 dt.

where Wℚ and Bℚ are correlated Brownian motions; and Ñ is a compensated state-dependent
Poisson random measure with which we associate a Lévy kernel 𝜁 (z)𝜈(ds). The drift 𝜇(z) is
fixed by the Lévy kernel and volatility so that S = eX is a martingale:

𝜇(z) = −
1
2
𝜎

2(z) − 𝜁 (z)
∫ℝ

𝜈(ds)(es − 1 − s).

Note that the volatility 𝜎 and Lévy kernel 𝜁𝜈 are driven by Z, which is slowly varying in the
following sense. Under the physical measure ℙ, the dynamics of Z are given by

dZt = 𝜀
2c(Zt) dt + 𝜀 g(Zt) dB̃t, (physical measure ℙ)

where B̃t = Bℚ
t − ∫

t
0 Γ(Zs) ds is a standardℙ-Brownian motion (Γ is known as the market price

of risk associated with B̃). The infinitesimal generator of Z under the physical measure

AZ = 𝜀
2
(

1
2

g2(z)𝜕2
z + c(z)𝜕z

)
is scaled by 𝜀

2, which is assumed to be a small parameter: 𝜀2
<< 1. Thus, Z fluctuates over an

intrinsic timescale 1∕𝜀2, which is large.
Due to the separation of timescales, the (X,Z) process has a generator that naturally factors

into three terms of different powers of 𝜀, just as in (7.9):

A = A0 + 𝜀A1 + 𝜀
2A2,

where A0, A1, and A2 are given by

A0 = 𝜇(z)𝜕x +
1
2
𝜎

2(z)𝜕2
x + 𝜁 (z)

∫ℝ
𝜈(ds)(𝜃s − 1 − s𝜕x), (7.26)

A1 = −Γ(z)g(z)𝜕z + 𝜌g(z)𝜎(z)𝜕x𝜕z,

A2 =
1
2

g2(z)𝜕2
z + c(z)𝜕z.

Here, the shift operator 𝜃s acts on the x variable. Comparing equations (7.19) and (7.26), we
observe that, for fixed z, the operator A0 above is the generator of a Lévy process. As the
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operator A0 in (7.26) acts only on the variable x, the variable z serves only as a parameter.
Thus, we have

Γ0(t, x, z; T , y) =
1

2𝜋 ∫
d𝜉 ei𝜉(x−y)+(T−t)Φ0(𝜉,z)

,

where

Φ0(𝜉, z) ∶= i𝜇(z)𝜉 −
1
2
𝜎

2(z)𝜉2 + 𝜁 (z)
∫

𝜈(ds)(ei𝜉s − 1 − i𝜉s).

Because A is of the form (7.9) (set An = 0 for n ≥ 3), and since the fundamental solution
Γ0 corresponding to A0 is known, we can use (7.11) and (7.12) to write u0 and u1 explicitly.
For an option with payoff 𝜑(XT ), we have

u0(t, x, z) =
∫

dx 𝜑(y)
1

2𝜋 ∫
d𝜉 ei𝜉(x−y)+(T−t)Φ0(𝜉,z) =

1
2𝜋 ∫

d𝜉 ei𝜉(x−y)+(T−t)Φ0(𝜉,z)
�̂�(𝜉),

where �̂� is the Fourier transform of 𝜙.
A similar computation yields the following expression for u1:

u1(t, x, z) =
(T − t)∕2

2𝜋 ∫ℝ
d𝜉 ei𝜉x+tΦ0(𝜉,z)

�̂�(𝜉)M
𝜉
(z),

where

M
𝜉
(z) = V1(z)(−i𝜉3 + 𝜉

2) + U1(z)
(
𝜉

2

∫ℝ
𝜈(ds)(es − 1 − s) + i𝜉

∫ℝ
𝜈(ds)(ei𝜉s − 1 − i𝜉s)

)
+ V0(z)(−𝜉2 − i𝜉) + U0(z)

(
−i𝜉

∫ℝ
𝜈(ds)(es − 1 − s) +

∫ℝ
𝜈(ds)(ei𝜉s − 1 − i𝜉s)

)
,

and

V1(z) =
1
2

g(z)𝜌𝜎(z)𝜕z𝜎
2(z), V0(z) = −

1
2

g(z)Γ(z)𝜕z𝜎
2(z),

U1(z) = g(z)𝜌𝜎(z)𝜕z𝜁 (z), U0(z) = −g(z)Γ(z)𝜕z𝜁 (z).

If the coefficients of A and the payoff function are smooth and bounded, then one can establish
the following accuracy for the first-order price approximation

|u(t, x, z) − (u0(t, x, z) + 𝜀u1(t, x, z))| = O(𝜀2),

which holds pointwise. Note that, to compute the approximate price of an option u0 + 𝜀u1,
one does not need full knowledge of (g, 𝜎,Γ, 𝜁 , 𝜌, z, 𝜀). Rather, at order 𝜀, the information
contained in these five functions and two variables is entirely captured by four group
parameters (𝜀U1(z), 𝜀U0(z), 𝜀V1(z), 𝜀V0(z)). The values of these four parameters can be
obtained by calibrating to observed call and put prices, as described in detail in Lorig and
Lozano-Carbassé (2015).

7.2.8 Comparison of the Expansion Schemes

The approximation methods presented in Sections 7.2.5, 7.2.6, and 7.2.7 exploit different
small parameters in A and therefore work best (i.e., provide the most accurate approxima-
tions) in different regimes. Rigorous accuracy results must be obtained on a case-by-case
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basis. However, it is generally true that the accuracy of ūn ∶=
∑n

k=0 uk depends on how well
̄An ∶=

∑n
k=0 Ak approximates A.

For example, the Taylor series expansion described in Section 7.2.5 works best if the coef-
ficients of A are slowly varying. In this case, the coefficients can be well approximated by a
Taylor series of low order. Thus, a highly accurate approximation of A can be obtained with
only a few terms.

The approximation considered in Section 7.2.6 works best when the diffusion coefficient of
the volatility-driving process Y is small in comparison to the drift coefficient of Y and the drift
and diffusion coefficients of X.

Finally, the approximation considered in Section 7.2.7 is when the drift coefficient of the
volatility-driving process Z is small in comparison to the diffusion coefficient of Z, which in
turn is small in comparison to the drift and diffusion coefficients of X. As mentioned in this
chapter, this means that the intrinsic timescale of Z must be slow in comparison to the intrinsic
timescale of X.

7.3 Merton Problem with Stochastic Volatility: Model Coefficient
Polynomial Expansions

A landmark pair of papers on optimal investment strategy by Robert Merton analyzed the
problem of how an investor should optimally allocate his wealth between a riskless bond and
some risky assets, in order to maximize his expected utility of wealth. This problem and its
variation are now referred to as the Merton problem.

In the original papers, each of the risky assets follows geometric Brownian motion with
constant volatility. This modeling assumption is convenient from the standpoint of analytic
tractability but is not realistic in practice, as it does not allow for stochastic volatility. Because
of this, there has been much interest in analyzing how an investor’s optimal investment strategy
changes in the presence of stochastic volatility. Here, we focus on asymptotic methods for
analyzing the stochastic control problem associated with portfolio optimization.

Analysis with multiscale stochastic volatility models described in Section 7.2.7 was pre-
sented in the case of simple power utilities in Fouque et al. (2000 Section 10.1), and expansions
for a hedging problem in Jonsson and Sircar (2002a, b) in the dual optimization problem, both
for fast mean-reverting stochastic volatility. In Fouque et al. (2013), expansions are constructed
directly in the primal problem under both fast and slow volatility fluctuations. Indifference
pricing approximations with exponential utility and fast volatility were studied in Sircar and
Zariphopoulou (2005). In this section, we present some new approximations for the Merton
problem with stochastic volatility.

7.3.1 Models and Dynamic Programming Equation

The polynomial expansion techniques outlined in Section 7.2.5 can be extended to find explicit
asymptotic solutions to the Merton problem in a general local-stochastic volatility (LSV) set-
ting, that is, 𝜎t = 𝜎(t, St,Yt). To fix ideas, however, we consider the simpler stochastic volatility
(SV) setting, in which a risky asset S, under the physical probability measure ℙ, is the solution
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of the following SDE:

dSt = 𝜇(Yt)St dt + 𝜎(Yt)St dBS
t , dYt = c(Yt) dt + 𝛽(Yt) dBY

t , d⟨BS
,BY⟩t = 𝜌dt,

where BS and BY are standard Brownian motions with correlation 𝜌. Let W denote the wealth
process of an investor who holds 𝜋t units worth of currency in S at time t, and has (Wt − 𝜋t)
units of currency in a bond. For simplicity, we assume the risk-free rate of interest is zero. As
such, the wealth process W satisfies

dWt =
𝜋t

St
dSt = 𝜋t𝜇(Yt) dt + 𝜋t𝜎(Yt) dBS

t .

Observe that S does not appear in the dynamics of the wealth process W.
An investor chooses 𝜋t to maximize his expected utility of wealth at a time T in the future,

where utility is measured by a smooth, increasing, and strictly concave function U ∶ ℝ+ → ℝ,
and the objective to maximize is 𝔼 U(WT ). Increasing describes a preference for more wealth
than less, whereas concavity captures risk aversion, with more concave being more risk averse.
The analysis is illustrated with power utility functions in Section 7.3.3.

We define the investor’s value function u by

u(t, y, 𝑤) ∶= sup
𝜋∈Π

𝔼[U(WT )|Yt = y,Wt = 𝑤],

where Π is the set of admissible strategies:

Π ∶=
{
𝜋 adapted: 𝔼

∫

T

0
𝜋

2
t 𝜎

2(Yt) dt < ∞ and Wt ≥ 0 a.s.

}
,

where adapted means adapted to the filtration generated by (BS
,BY ).

Assuming that u ∈ C1,2([0,T],ℝ,ℝ+), the value function solves the Hamilton–Jacobi–
Bellman partial differential equation (HJB-PDE) problem:

(𝜕t +AY )u + max
𝜋∈ℝ

A𝜋u = 0, u(T , y, 𝑤) = U(𝑤), (7.27)

where (AY +A𝜋) is the generator of (Y ,W), assuming a Markov investment strategy
𝜋t = 𝜋(t,Yt,Wt). Specifically, the operators AY and A𝜋 are given by

AY = c(y)𝜕y +
1
2
𝛽

2(y)𝜕2
y ,

A𝜋 = 𝜋(t, y, 𝑤)𝜇(y)𝜕
𝑤
+

1
2
𝜋

2(t, y, 𝑤)𝜎2(y)𝜕2
𝑤
+ 𝜋(t, y, 𝑤)𝜌𝜎(y)𝛽(y)𝜕y𝜕𝑤.

The optimal strategy 𝜋
∗ is given by

𝜋
∗ = arg max

𝜋∈ℝ
A𝜋u = −

𝜇(𝜕
𝑤

u) + 𝜌𝛽𝜎(𝜕y𝜕𝑤u)

𝜎
2(𝜕2

𝑤
u)

, (7.28)

where, for simplicity (and from now on), we have omitted the arguments (t, y, 𝑤).
Inserting the optimal strategy 𝜋

∗ into the HJB-PDE (7.27) yields

(𝜕t +AY )u +N (u) = 0, (7.29)
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where N (u) is a nonlinear term:

N (u) = −
1
2
𝜆

2 (𝜕𝑤u)2

𝜕
2
𝑤

u
− 𝜌𝛽𝜆

(𝜕
𝑤

u)(𝜕y𝜕𝑤u)

𝜕
2
𝑤

u
−

1
2
𝜌

2
𝛽

2
(𝜕y𝜕𝑤u)2

𝜕
2
𝑤

u
.

Here, we have introduced the Sharpe ratio 𝜆(y) ∶= 𝜇(y)∕𝜎(y).

7.3.2 Asymptotic Approximation

For general {𝛽, c, 𝜆}, there is no closed-form solution of (7.29). Hence, we seek an asymptotic
approximation for u. To this end, using equation (7.22) from Section 7.2.5.1 as a guide, we
expand the coefficients in (7.29) in a Taylor series about an arbitrary point ȳ. Specifically, for
any function 𝜒 ∶ ℝ → ℝ, we may formally write

𝜒(y) =
∞∑

n=0

𝜀
n
𝜒n(y), 𝜒n(y) ∶=

1
n!
𝜕

n
y𝜒(ȳ)⋅(y − ȳ)n, 𝜀 = 1, (7.30)

where we have once again introduced 𝜀 for purposes of accounting. We also expand the func-
tion u as a power series in 𝜀

u =
∞∑

n=0

𝜀
nun, 𝜀 = 1. (7.31)

Now, for each group of coefficients appearing in (7.29), we insert an expansion of the form
(7.30), and we define

An ∶= cn𝜕y + ( 1
2𝛽

2)n𝜕2
y , n ∈ {0} ∪ ℕ. (7.32)

We also insert into (7.29) our expansion (7.31) for u.
Next, collecting terms of like powers of 𝜀, we obtain at lowest order

(𝜕t +A0)u0 − (
1
2
𝜆

2)0
(𝜕

𝑤
u0)2

𝜕
2
𝑤

u0

− (𝜌𝛽𝜆)0
(𝜕

𝑤
u0)(𝜕y𝜕𝑤u0)

𝜕
2
𝑤

u0

− (
1
2
𝜌

2
𝛽

2)0
(𝜕y𝜕𝑤u0)2

𝜕
2
𝑤

u0

= 0,

with u0(T , y, 𝑤) = U(𝑤). We can look for a solution u0 = u(t, 𝑤) that is independent of y, and
then we have

𝜕tu0 − (
1
2
𝜆

2)0
(𝜕

𝑤
u0)2

𝜕
2
𝑤

u0

= 0, u0(T , 𝑤) = U(𝑤). (7.33)

We observe that (7.33) is the same nonlinear PDE problem that arises when one considers an
underlying that has a constant drift 𝜇0 = 𝜇(ȳ), diffusion coefficient 𝜎0 = 𝜎(ȳ), and Sharpe ratio
𝜆0 = 𝜆(ȳ) = 𝜇(ȳ)∕𝜎(ȳ).

It is convenient to define the risk-tolerance function

R0 ∶=
−𝜕

𝑤
u0

𝜕
2
𝑤

u0

,

and the operators
Dk = Rk

0𝜕
k
𝑤
, k = 1, 2,. · · · .
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We now proceed to the order O(𝜀) terms. Using u0 = u0(t, 𝑤) and (7.33), we obtain

(𝜕t +A0)u1 + (
1
2
𝜆

2
0)D2u1 + 𝜆

2
0D1u1 + (𝜌𝛽𝜆)0D1𝜕yu1 = −(

1
2
𝜆

2)1D1u0, (7.34)

u1(T , y, 𝑤) = 0, (7.35)

which is a linear PDE problem for u1.
We can rewrite equations (7.34)–(7.35) more compactly as

(𝜕t +A0 + B0(t))u1 + H1 = 0, u1(T , y, 𝑤) = 0, (7.36)

where the linear operator B(t) and the source term H1 are given by

B0(t) = 1
2𝜆

2
0D2 + 𝜆

2
0D1 + (𝜌𝛽𝜆)0D1𝜕y, H1 = ( 1

2𝜆
2)1R0𝜕𝑤u0.

Observe that (7.36) is a linear PDE for u1.
The following change of variables (see Fouque et al., 2013) will be useful for solving the

PDE problem (7.36). Define

u1(t, y, 𝑤) = q1(t, y, z(t, 𝑤)), z(t, 𝑤) = − log 𝜕
𝑤

u0(t, 𝑤) + 1
2𝜆

2
0(T − t). (7.37)

Inserting (7.37) into (7.36), we find that q1 satisfies

0 = (𝜕t +A0 + C0)q1 + Q1, q1(T , y, z) = 0, (7.38)

where the operator C0 is given by

C0 =
1
2
𝜆

2
0𝜕

2
z + (𝜌𝛽𝜆)0𝜕y𝜕z, (7.39)

and the function Q1 satisfies H1(t, y, 𝑤) = Q1(t, y, z(t, 𝑤)).
Now, from (7.32) and (7.39), we observe that the operator (A0 + C0) is the infinitesimal

generator of a diffusion in ℝ2 whose drift vector and covariance matrix are constant. The
semigroup P0(t, t′) generated by (A0 + C0) is given by

P0(t,T)G(y, z) ∶=
∫ℝ2

d𝜂 d𝜁 Γ0(t, y, z; T , 𝜂, 𝜁 )G(𝜂, 𝜁 ),

where Γ0, the fundamental solution corresponding to (𝜕t +A0 + C0), is a Gaussian kernel:

Γ0(t, y, z; T , 𝜂, 𝜁 ) =
1√

(2𝜋)3|C| exp

(
−

1
2

mTC−1m
)
,

with covariance matrix C and vector m given by

C = (T − t)
(

(𝛽2)0 (𝜌𝛽𝜆)0
(𝜌𝛽𝜆)0 (𝜆2)0

)
, m =

(
𝜂 − y − (T − t)c0

𝜁 − z

)
.

By Duhamel’s principle, the unique classical solution to (7.38) is given by

q1(t) =
∫

T

t
ds P0(t, s)Q1(s),
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In the case of a general utility function, (7.33) is easily solved numerically, for instance by
solving the fast diffusion (or Black’s) equation for the risk tolerance function R0 (see Fouque
et al., 2013). Then, u1 can also be computed numerically using the formulas above. In the case
of power utility, there are explicit formulas, as given in Section 7.3.3.

Having obtained an approximation for the value function u ≈ u0 + u1, we now seek an
expansion for the optimal control 𝜋∗ ≈ 𝜋

∗
0 + 𝜋

∗
1 . Inserting the expansion (7.30) of the coef-

ficients and the expansion (7.31) for u into (7.28), and collecting terms of like powers of 𝜀, we
obtain

O(1) ∶ 𝜋0 = −
𝜇0(𝜕𝑤u0)

(𝜎2)0(𝜕2
𝑤

u0)
, (7.40)

O(𝜀) ∶ 𝜋1 = −𝜋0
(𝜎2)1
(𝜎2)0

− 𝜋0
(𝜕2

𝑤
u1)

(𝜕2
𝑤

u0)
− 𝜇1

(𝜕
𝑤

u0)
(𝜎2)0(𝜕2

𝑤
u0)

− 𝜇0
(𝜕

𝑤
u1)

(𝜎2)0(𝜕2
𝑤

u0)
− (𝜌𝛽𝜎)0

(𝜕y𝜕𝑤u1)

(𝜎2)0(𝜕2
𝑤

u0)
. (7.41)

Higher order terms for both the value function u and the optimal control 𝜋∗ can be obtained
in the same manner as u1 and 𝜋1. Analysis of the asymptotic formulas for different utility func-
tions and stochastic volatility models is presented in more detail in Lorig and Sircar (2015).

7.3.3 Power Utility

Finally, we consider a utility function U from the constant relative risk aversion (CRRA), or
power family:

CRRA utility: U(𝑤) ∶=
𝑤

1−𝛾

1 − 𝛾

,𝑤 > 0, 𝛾 > 0, 𝛾 ≠ 1,

where 𝛾 is called the risk aversion coefficient. Here, all the quantities above can be computed
explicitly.

The explicit solution u0 to (7.33) is

u0(t, 𝑤) = U(𝑤) exp

(
1
2
𝜆

2
0

(
1 − 𝛾

𝛾

)
(T − t)

)
.

The risk-tolerance function is R0 = 𝑤

𝛾
, and the transformation in (7.37) is then

z(t, 𝑤) = 𝛾𝑤 + (T − t)
(

2𝛾 − 1
𝛾

)
1
2
𝜆

2
0.

An explicit computation reveals that u1 is given by

u1(t, y, 𝑤) = q1(t, y, z(t, 𝑤))

=
1 − 𝛾

𝛾

u0(t, 𝑤)
(

1
2
𝜆

2(ȳ)
)′ (

(T − t)(y − ȳ) +
1
2
(T − t)2

(
c0 +

1 − 𝛾

𝛾

𝜌𝛽0𝜆0

))
.
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For the specific case ȳ = y, the above expression simplifies to

u1(t, y, 𝑤) =
1 − 𝛾

𝛾

u0(t, 𝑤)
(

1
2
𝜆

2(y)
)′ (1

2
(T − t)2

(
c0 +

1 − 𝛾

𝛾

𝜌𝛽0𝜆0

))
.

Using these explicit representations of u0 and u1, the expressions (7.40) and (7.41) for the
optimal stockholding approximations become

𝜋
∗
0 =

𝜇0

𝛾𝜎
2
0

,

𝜋
∗
1 (t, y) = (y − ȳ)

(
𝜇
′(ȳ)
𝛾𝜎

2
0

−
𝜇0

𝛾𝜎
4
0

(
𝜎

2(ȳ)
)′) +

(1 − 𝛾)(T − t)
𝛾𝜎0

(
𝜌𝛽0

1
𝛾

(
1
2
𝜆

2(ȳ)
)′)

.

For the specific case ȳ = y, the formula for 𝜋∗
1 simplifies to

𝜋
∗
1 (t, y) =

(1 − 𝛾)(T − t)
𝛾𝜎0

𝜌𝛽0
1
𝛾

(
1
2
𝜆

2(y)
)′

.

7.4 Conclusions

Asymptotic methods can be used to analyze and simplify pricing and portfolio optimization
problems, and we have presented some examples and methodologies. A key insight is to per-
turb problems with stochastic volatility around their constant volatility counterparts to obtain
the principle effect of volatility uncertainty.

These approaches reduce the dimension of the effective problems that have to be solved, and
often lead to explicit formulas that can be analyzed for intuition. In the context of portfolio
problems accounting for stochastic volatility, recent progress has been made in cases where
there are transaction costs (Bichuch and Sircar, 2014, Kallsen and Muhle-Karbe, 2013) or
stochastic risk aversion that varies with market conditions (Dong and Sircar, 2014), and under
more complex local-stochastic volatility models (Lorig and Sircar, 2015).
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8.1 Introduction

The analysis of financial and econometric data is typified by non-Gaussian multivariate
observations that exhibit complex dependencies: heavy-tailed and skewed marginal distribu-
tions are commonly encountered; serial dependence, such as autocorrelation and conditional
heteroscedasticity, appear in time-ordered sequences; and nonlinear, higher-order, and tail
dependence are widespread. Illustrations of serial dependence, nonnormality, and nonlinear
dependence are shown in Figure 8.1.

When data are assumed to be jointly Gaussian, all dependence is linear, and therefore only
pairwise among the variables. In this setting, Pearson’s product-moment correlation coefficient
uniquely characterizes the sign and strength of any such dependence.

Definition 8.1 For random variables X and Y with joint density fXY , Pearson’s correlation
coefficient is defined as

𝜌P(X,Y) = E

⎡⎢⎢⎢⎣
(X − 𝜇X)√

𝜎
2
X

(Y − 𝜇Y )√
𝜎

2
Y

⎤⎥⎥⎥⎦ = ∫ ∫

(x − 𝜇X)√
𝜎

2
X

(y − 𝜇Y )√
𝜎

2
Y

fXY (x, y) dx dy,

where 𝜇X = E(X) = ∫ ∫ xfXY (x, y) dx dy, and 𝜎
2
X = E[(X − 𝜇X)2] = ∫ ∫ (x − 𝜇X)2fXY (x, y) dx dy,

are the mean and variance of X, respectively, and 𝜇Y and 𝜎
2
Y are defined similarly.

This conventional measure of pairwise linear association is well-defined provided 𝜎
2
X and 𝜎

2
Y

are positive and finite, in which case 𝜌P(X,Y) ∈ [−1,+1]. A value of −1 or +1 indicates

Financial Signal Processing and Machine Learning, First Edition.
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Figure 8.1 Top left: Strong and persistent positive autocorrelation, that is, persistence in local level;
top right: moderate volatility clustering, that is, i.e., persistence in local variation. Middle left: Right
tail density estimates of Gaussian versus heavy- or thick-tailed data; middle right: sample quantiles of
heavy-tailed data versus the corresponding quantiles of the Gaussian distribution. Bottom left: Linear
regression line fit to non-Gaussian data; right: corresponding estimated density contours of the normal-
ized sample ranks, which show a positive association that is stronger in the lower left quadrant compared
to the upper right.
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perfect negative or positive linear dependence, respectively, and in either case X and Y have
an exact linear relationship. Negative and positive values indicate negative and positive linear
associations, respectively, while a value of 0 indicates no linear dependence.

A sample estimator �̂�P is typically defined by replacing expectations with empirical expec-
tations in the above definition. For a paired random sample of n observations (X1∶n,Y1∶n) =
{(xi, yi)}n

i=1, define

�̂�P(X1∶n,Y1∶n) =
1

n − 1

n∑
i=1

(xi − �̂�X)√
�̂�

2
X

(yi − �̂�Y )√
�̂�

2
Y

∶ �̂�X =
1
n

n∑
i=1

xi; �̂�
2
X =

1
n − 1

n∑
i=1

(xi − �̂�X)2,

where �̂�Y and �̂�
2
Y are defined similarly. For jointly Gaussian variables (X,Y), zero correlation is

equivalent to independence. For an independent and identically distributed (i.i.d.) sample from
the bivariate normal distribution, inference regarding 𝜌P can be conducted using the following
asymptotic approximation: √

n(�̂�P − 𝜌P)
D
→N [0, (1 − 𝜌

2
P)

2],

in which
D
→ denotes convergence in distribution. Under the null hypothesis of zero correla-

tion, this expression simplifies to
√

n�̂�P

D
→N (0, 1). More generally, for an i.i.d sample from

an arbitrary distribution with finite fourth moments, E(X4) and E(Y4), a variance-stabilizing
transformation may be applied (Fisher’s transformation) to obtain the alternative asymptotic
approximation (cf. Ferguson, 1996)√

n

2

(
log

1 + �̂�P

1 − �̂�P
− log

1 + 𝜌P

1 − 𝜌P

)
D
→N (0, 1).

Although the previous approximation is quite general, assuming finite fourth moments may
be unreasonable in numerous financial applications where extreme events are common. Fur-
thermore, Pearson’s correlation coefficient measures the strength of linear relationships only.
There are many situations in which correlations are zero but a strong nonlinear relationship
exists, such that variables are highly dependent. In Section 8.2, we discuss several robust
measures of correlation and pairwise association, and illustrate their application in measuring
serial dependence in time-ordered data. In Section 8.3, we consider multivariate extensions and
Granger causality, and introduce measures of mutual independence. Finally, in Section 8.4 we
explore copulas and their financial applications.

8.2 Robust Measures of Correlation and Autocorrelation

Financial data are often time-ordered, and intertemporal dependence is commonplace. The
autocovariance and autocorrelation functions are extensions of covariance and Pearson’s cor-
relation to a time-dependent setting, respectively.

Definition 8.2 For a univariate ordered sequence of random variables {Xt}, the autocovari-
ance 𝛾 and autocorrelation 𝜌 at indices q and r (Shumway and Stoffer, 2011) are defined as

𝛾(Xq,Xr) = 𝛾(q, r) = E[(Xq − 𝜇q)(Xr − 𝜇r)]
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and

𝜌P(Xq,Xr) = 𝜌P(q, r) =
𝛾(q, r)√

𝛾(q, q)
√
𝛾(r, r)

,

respectively, in which 𝜇q = E(Xq) and 𝜇r = E(Xr). The above quantities are well-defined pro-
vided E(X2

t ) is finite for all t; however, estimating these quantities from an observed sequence
X1∶n = {xt}n

t=1 requires either multiple i.i.d. realizations of the entire sequence (uncommon in
finance), or some additional assumptions. The first basic assumption is that the observations are
equally spaced, and t denotes their discrete-time index. We will refer to such sequences gener-
ically as time-series. In finance, this assumption may only hold approximately. For example, a
sequence of daily market closing asset prices may only be available for weekdays, with addi-
tional gaps on holidays, or intraday asset transaction prices may be reported every hundredth of
a second, but there may be no transaction at many of these times. In either case, the consecutive
observations are commonly regarded as equally spaced, for simplicity.

The next basic assumption is some form of distributional invariance over time, such as sta-
tionarity.

Definition 8.3 A univariate sequence of random variables {Xt} is weakly (or covariance)
stationary if and only if

E(Xt) = E(Xt−h) = 𝜇 and 𝛾(t, t − h) = 𝛾(|h|) = 𝛾h ∀t, h, and 𝛾0 < ∞.

This implies that the means and variances are finite and constant, and the autocovariance is
constant with respect to t, and only depends on the relative time lag h between observations.

For any k-tuple of indices t1, t2,… , tk, let Ft1,t2,…,tk
(⋅) denote the joint distribution function

of (Xt1
,Xt2

,… ,Xtk
). Then, the sequence is strictly stationary if and only if

Ft1,t2,…,tk
(⋅) = Ft1−h,t2−h,…,tk−h(⋅) ∀h, k, and ∀t1, t2,… , tk.

This implies that the joint distributions of all k-tuples are invariant to a common time shift h
such that their relative time lags remain constant.

Strict stationary implies weak stationarity provided the variance is also finite.

Now, under the weak stationarity assumption, the parameters 𝛾h = 𝛾(h) for h = 0, 1, 2,…
denote the autocovariance function of {Xt} with respect to the time lag h, and the cor-
responding autocorrelation function (ACF) is defined as 𝜌P(h) = 𝛾h∕𝛾0. Under the weak
stationarity assumption, the joint distribution of the random variables (X1,… ,Xn) has
mean vector 𝝁X = 𝟏𝜇, where 𝟏 denotes a length n vector of ones, and a symmetric
Toeplitz covariance matrix ΣX, with [ΣX]i,j = 𝛾(|i − j|). Furthermore, both ΣX and the
corresponding correlation matrix ΩX are positive definite for any stationary sequence. For
an observed stationary time-series X1∶n = {xt}n

t=1, the mean is estimated as before (�̂�X),
while autocovariances and autocorrelations are commonly estimated as �̂�(X1∶n; h) = �̂�(h) =
1
n

∑n
t=h+1(xt − �̂�X)(xt−h − �̂�X) and �̂�P(X1∶n; h) = �̂�P(h) = �̂�(h)∕�̂�(0), respectively. Using

the scaling 1
n as opposed to 1

n−h assures that the corresponding estimated covariance and
correlation matrices [Σ̂X]i,j = �̂�(|i − j|) and [ ̂ΩX]i,j = �̂�P(|i − j|) are both positive definite
(McLeod and Jimenéz, 1984).



�

� �

�

166 Financial Signal Processing and Machine Learning

8.2.1 Transformations and Rank-Based Methods

Pearson’s correlation and the autocorrelation function are commonly interpreted under an
implicit joint normality assumption on the data. The alternative measures discussed in this sub-
section offer robustness to outlying and extreme observations and consider nonlinear depen-
dencies, all of which are common in financial data.

8.2.1.1 Huber-type Correlations

Transformations may be applied to define a robust correlation measure between pairs of ran-
dom variables (X,Y). For example, let 𝜇R and 𝜎R denote robust location and scale parameters,
such as the trimmed mean and trimmed standard deviation. And let 𝜓 denote a bounded mono-
tone function, such as 𝜓(x; k) = xI|x|≤k + sgn(x)kI|x|>k (cf. Huber, 1981), where k is some
positive constant and IA is the indicator function of an event A. Then, a robust covariance
and correlation may be defined as

𝛾R(X,Y) = 𝜎R(X)𝜎R(Y)E
[
𝜓

(
X − 𝜇R(X)
𝜎R(X)

)
𝜓

(
Y − 𝜇R(Y)
𝜎R(Y)

)]
and

𝜌R(X,Y) =
𝛾R(X,Y)√

𝛾R(X,X)
√
𝛾R(Y ,Y)

,

respectively (cf. Maronna et al., 2006). Although these measures are robust to outlying and
extreme observations, they depend on the choice of transformation 𝜓 . They provide an intu-
itive measure of association, however, for an arbitrary joint distribution on (X,Y), 𝜌R(X,Y) ≠
𝜌P(X,Y), in general. Sample versions are obtained by replacing the expectation, 𝜇R and 𝜎R,
by their sample estimates in the above expressions. Asymptotic sampling distributions can be
derived, but the setting is more complicated than above. Finally, robust pairwise covariances
and correlations such as these may be used to define corresponding covariance and correla-
tion matrices for random vectors, but the result is not positive definite (or affine equivariant),
in general.

8.2.1.2 Kendall’s Tau

Rank-based methods measure all monotonic relationships and are resistant to outliers.
Kendall’s tau (Kendall, 1938) is a nonparametric measure of dependence, for which the
sample estimate considers the pairwise agreement between two ranked lists.

Definition 8.4 For random variables X and Y, Kendall’s tau is defined as

𝜏(X,Y) = P[(X − X∗)(Y − Y∗) > 0] − P[(X − X∗)(Y − Y∗) < 0]

= E{sgn[(X − X∗)(Y − Y∗)]}, (8.1)

in which (X∗
,Y∗) denotes an i.i.d. copy of (X,Y).
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A sample estimator 𝜏 considers the pairwise agreement between two ranked lists. For a
paired random sample of n observations (X1∶n,Y1∶n) = {(xi, yi)}n

i=1, the sample analog of (8.1)
is defined as

𝜏(X1∶n,Y1∶n) =
(n

2

)−1 n∑
j=2

j−1∑
i=1

sgn(xj − xi)sgn(yj − yi),

and, in the absence of ties, is also equal to

number of concordant pairs − number of discordant pairs
number of concordant pairs + number of discordant pairs

,

in which a pair of observations (xj, yj), (xi, yi) are concordant if sgn(xj − xi) = sgn(yj − yi), and
discordant otherwise. These definitions may also be extended to define analogous autocorre-
lation functions.

Definition 8.5 The ACF based on Kendall’s tau (Bingham and Schmidt, 2006) for a station-
ary sequence of random variables {Xt} is defined as

𝜏(Xt; h) = 𝜏h = P[(Xt − X∗
t )(Xt−h − X∗

t−h) > 0] − P[(Xt − X∗
t )(Xt−h − X∗

t−h) < 0]

= E{sgn[(Xt − X∗
t )(Xt−h − X∗

t−h)]}, (8.2)

in which (X∗
t ,X

∗
t−h) denotes an i.d.d. copy of (Xt,Xt−h).

For an observed time-series X1∶n = {xt}n
t=1, the sample analog of (8.2) is defined as

𝜏(X1∶n; h) = 𝜏h =
(

n − h
2

)−1 n−h∑
t=2

t−1∑
i=1

sgn(xt − xi)sgn(xt+h − xi+h),

which is not assured to have a corresponding estimated correlation matrix that is positive
definite.

In certain applications, Kendall’s tau has a distinct advantage over Pearson’s correlation
in that it is invariant to increasing monotonic transformations of one or both variables. For
example, 𝜏(X,Y) = 𝜏(X, log Y) = 𝜏(log X, log Y), for positive random variables, and simi-
larly for 𝜏. Bingham and Schmidt (2006) consider an example based on a time-series of squared
asset returns, which exhibits abnormally high dependence at a specific lag. This is exaggerated
in a Pearson ACF, as it only measures linear dependence. After applying a data standardiza-
tion, the magnitude of the Pearson ACF at this lag decreases substantially, whereas the ACF
based on Kendall’s tau is very similar under both specifications.

Figure 8.2 offers an example of a scenario in which the autocorrelation based on Kendall’s
tau differs substantially from that produced from a Pearson ACF. It depicts the Bank of Amer-
ica (BOA) stock price and the estimated ACF of the squared daily stock returns from June 2008
to January 2009, a very volatile period that included the failure of Lehman Brothers, Washing-
ton Mutual, and several other financial institutions. The ACF based on Kendall’s tau detects
persistent serial dependence across several lags, while the Pearson ACF detects dependence
only at the first and 10th lags. This discrepancy suggests that the underlying serial dependence
is highly nonlinear and non-Gaussian in nature.
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Figure 8.2 Bank of America (BOA) daily closing stock price. Bottom: Standardized (Fisher’s trans-
formation) ACF based on Kendall’s tau and Pearson’s correlation coefficient for the squared daily stock
returns.

8.2.1.3 Spearman’s Rho

One of the shortcomings of Kendall’s tau, as discussed in Helsel and Hirsch (1992), is that
since it is purely based on sign, the magnitude of concordance or discordance is not taken
into account. Spearman’s rho (Spearman, 1904), which computes Pearson’s correlation on the
normalized ranks in the sample case, does explicitly take magnitude into account. Though
Kendall’s tau and Spearman’s rho are asymptotically equivalent when testing for indepen-
dence, Spearman’s rho can be preferable in certain scenarios. For example, Xu et al. (2013)
conduct a simulation study with bivariate contaminated normal data and conclude that Spear-
man’s rho is preferable to Kendall’s tau in small sample sizes when the population correlation
is moderate.

Definition 8.6 The ACF based on Spearman’s rho (Hollander and Wolfe, 1999) for a
stationary sequence of random variables {Xt} with common marginal distribution F is
defined as

𝜌S(Xt; h) = 𝜌S(h) = 𝜌P[F(Xt),F(Xt−h)],

that is, the Pearson correlation of F(Xt) and F(Xt−h).
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For an observed time-series X1∶n = {xt}n
t=1, a sample version may be defined as

�̂�S(X1∶n; h) = �̂�S(h) =
12

n(n2 − 1)

n∑
t=1+h

(
rt −

n + 1
2

)(
rt−h −

n + 1
2

)
,

in which rt = rank{xt ∶ xt ∈ X1∶n}.

8.2.2 Inference

8.2.2.1 Kendall’s Tau

We can test the hypothesis of zero correlation, that is,

H0 ∶ 𝜏h = 0 𝑣s. H1 ∶ 𝜏h ≠ 0,

with the decision rule: Reject H0 if |𝜏h| ≤ 𝜅
𝛼∕2, in which 𝜅

𝛼∕2 can be computed from a table
of critical values. For larger sample sizes, a normal approximation may be utilized on a stan-
dardized version of 𝜏h

𝜏
∗
h =

𝜏h − E0(𝜏h)√
Var0(𝜏h)

,

where E0(𝜏h) and Var0(𝜏h) represent the respective mean and variance of 𝜏h under the null
hypothesis of independence. Under serial independence, Ferguson et al. (2000) derive

E0(𝜏h) =

{ (3n−3h−1)(n−h)
12 if 1 ≤ h ≤

n
2

(n−h)(n−h−1)
4 if n

2 ≤ h < n − 1.

The variance is derived in the case where h = 1 as

Var0(𝜏h) =
10n3 − 37n2 + 27n + 74

360
.

A formula for a general lag h (assuming n ≥ 4h) is constructed by Šiman (2012) as:

Var0(𝜏h) =
2(10n3 + (7 − 30h)n2 + (30h2 + 46h − 49)n + (−10h3 − 29h2 + 114h))

45(n − h)2(n − h − 1)2
.

It was additionally shown in Ferguson et al. (2000) that 𝜏h is asymptotically standard normal
and independent across lags h.

8.2.2.2 Spearman’s Rho

When n is large, we consider Fisher’s transformation of Spearman’s rho

ẑh =
1
2

log

(
1 + �̂�S(h)
1 − �̂�S(h)

)
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to test the hypothesis

H0 ∶ 𝜌S(h) = 0 𝑣s. H1 ∶ 𝜌S(h) ≠ 0.

The corresponding test statistic is ẑ∗h = ẑh∕
√

Var(ẑh). Per Anderson (1954), the standard error

of z is approximated as
√

Var(ẑh) =
√

n − 3, and ẑ∗h can be compared to the standard normal
distribution.

Example 8.1 To illustrate a setting in which rank-based measures are more informative than
Pearson’s correlation coefficient, we consider data simulated from a cubic moving average
model (adapted from Ashley and Patterson, 2001). Let

Xt = at + 0.02a3
t−1, 𝑤ith at

i.i.d.∼ F(0, 𝜎2
a ).

Clearly, there is serial dependence at lag h = 1, but it is nonlinear in nature.

We consider three distributions F for the mean zero i.i.d. innovations at: standard normal; Stu-
dent’s T distribution with 5 degrees of freedom (hence, heavy tails); and a stable Pareto distri-
bution with shape parameter 𝛼 = 1.93, which has characteristic function E(ei𝜃X) = exp(−|𝜃|𝛼).
The choice of 𝛼 = 1.93 is believed by Fama (1965) to adequately capture the leptokurtic nature
of US stock returns. From its construction, it is clear that the second moment of this distribu-
tion does not exist. One simulation from each process is shown in Figure 8.3. At each iteration,

−
5

0
5

Cubic moving average with standard normal innovations

−
20

0
20

40
60

Cubic moving average with Student's t Innovations

−
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−

50
0

50

Cubic moving average with stable symmetric innovations

Figure 8.3 Realized time-series simulated from each of the three process models discussed in
Example 8.1.
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Table 8.1 Percentage of tests failing to reject H0 of no lag-1
correlation

Error distribution Pearson Kendall Spearman

Standard normal 0.00 0 0
Student’s T 0.13 0 0
Stable Pareto 0.53 0 0

1000 observations were drawn from each model and the lag-1 correlations were tested under
the hypotheses stated in this chapter. This process was repeated 5000 times, and the results are
summarized in Table 8.1.

These simulations provide evidence to support the claim that Pearson’s correlation coeffi-
cient is robust to nonlinearity, but performs poorly in the presence of leptokurtic distributions
and outliers. Hence, one should be judicious in measuring and testing autocorrelation, espe-
cially when working with data exhibiting these characteristics.

8.2.3 Misspecification Testing

8.2.3.1 Ljung–Box Test

Assuming a time-series X1∶n is i.i.d. with finite variance, it has no autocorrelation at any
lag, that is, 𝜌P(h) = 0 for all h ≥ 1. Additionally,

√
n�̂�P(h) is asymptotically N(0, 1), and

�̂�P(1),… , �̂�P(m) are asymptotically independent. Thus, we can perform a joint test with the
hypotheses

H0 ∶ 𝜌P(1) = 𝜌P(2) = … = 𝜌P(m) = 0 𝑣s. H1 ∶ 𝜌P(h) ≠ 0 for some h = 1,… ,m.

This hypothesis is often tested on the residuals of a fitted time-series model. For example, con-
sider the residuals â1∶n from an autoregressive moving average [ARMA(p,q)] model. Either the
Ljung–Box statistic Q∗(m) (Ljung and Box, 1978) or the Box–Pierce statistic Q(m) (Box and
Pierce, 1970), which are asymptotically equivalent, can be used:

Q∗(â1∶n;m) = n(n + 2)
m∑

h=1

�̂�(â1∶n; h)2∕(n − h),Q(â1∶n;m) = n
m∑

h=1

�̂�(â1∶n; h)2. (8.3)

The null hypothesis is rejected at significance level 𝛼 if the statistic exceeds the 1 − 𝛼 quan-
tile of the 𝜒

2
m−p−q distribution. Per Lai and Xing (2008), simulation studies suggest that the

Ljung–Box statistic is better approximated by a 𝜒2
m−p−q than the Box–Pierce statistic, hence it

is preferred for small to moderate-sized samples. Analogous joint tests are formed for both 𝜏(h)
and 𝜌S(h) by leveraging the asymptotic normality and independence across lags by applying
similar transformations.

8.2.3.2 Conditional Heteroscedasticity

Traditionally, the Ljung–Box test is performed on the residuals of a linear or conditional mean
for a given series. However, in financial applications, conditional variance (also known as
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volatility), as opposed to conditional mean, is often a primary parameter of interest. Per Tsay
(2010), in many financial applications, a daily asset return series X1∶n = {xt}n

t=1 generally is
either serially uncorrelated or has minor correlations that can be accounted for with a low-order
ARMA model. However, substantial autocorrelation may exist in the squared return series
{x2

t }, and the volatility {𝜎2
t } sequence is the focus of modeling. The autoregressive conditional

heteroscedasticity (ARCH) model and its generalization are popular models for forecasting
volatility.

Definition 8.7 Let {at} denote the innovations from a return series centered by its conditional
mean (e.g., ARMA) equation. Then, the autoregressive conditional heteroscedasticity model
of order r (ARCHr model) is defined as

at = 𝜎t𝜀t, 𝜀t
iid∼ F(0, 1),

𝜎
2
t = 𝜔 + 𝛼1a2

t−1 +…+ 𝛼ra
2
t−r,

in which {𝜀t} represents a sequence of i.i.d. standardized innovations (Engle, 1982).

Normal random variables are commonly used for F, but other asymmetric and heavy-tailed
distributions, such as a standardized skewed Student’s T , can be substituted. The volatility
equation intercept 𝜔 is positive, and the coefficients 𝛼1,… , 𝛼r are constrained to be nonneg-
ative and sum to less than one to ensure positivity of {𝜎2

t } and stationarity of {(at, 𝜎
2
t )}. The

ARCH model was generalized to allow for a more parsimonious representation when r is large.

Definition 8.8 The generalized ARCH model (GARCHr,s) for {at} is defined as above, but
with

𝜎
2
t = 𝜔 +

r∑
i=1

𝛼ia
2
t−i +

s∑
j=1

𝛽j𝜎
2
t−j,

with 𝜔 > 0, 𝛼i, 𝛽j ≥ 0 for positivity, and
∑r

i=1 𝛼i +
∑s

j=1 𝛽j < 1 for stationarity (Bollerslev,
1986).

8.2.3.3 Parametric Tests for ARCH Effects

Observations from an ARCH or GARCH process are dependent. In particular, the sequence
of squared observations a2

1∶n = {a2
t }

n
t=1 have autocorrelation, which is referred to as ARCH

effects. Perhaps the most straightforward test for ARCH effects is the McLeod–Li test, which
simply computes the Ljung–Box statistic (8.3) on the squared innovations a2

t (or on squared
residuals â2

t ), in place of the innovations at. It was shown in McLeod and Li (1983) that
under the null hypothesis of independent observations, for fixed m, the scaled correlations√

n[�̂�P(a2
1∶n; 1),… , �̂�P(a2

1∶n;m)] are asymptotically normally distributed with mean zero and
identity covariance matrix. The McLeod–Li statistic is then computed as

Q∗
MC(a

2
1∶n;m) = n(n + 2)

m∑
h=1

[�̂�P(a2
1∶n; h)]2∕(n − h),

which is asymptotically 𝜒
2
m distributed under H0, and no adjustment is needed when a2

1∶n is
replaced by â2

1∶n.
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A popular alternative to test for ARCH effects is the Lagrange multiplier test of Engle (1982).
Per Tsay (2010), the test is equivalent to using a standard F-statistic to conduct the joint test
that all 𝛼i = 0 in the regression equation

a2
t = 𝜔 + 𝛼1a2

t−1 +…+ 𝛼ma2
t−m + et, (8.4)

where m is a prespecified lag order. The hypotheses are

H0 ∶ 𝛼1 = … = 𝛼m = 0 𝑣s. H1 ∶ 𝛼h ≠ 0 for some h = 1,… ,m.

To calculate the F-statistic, first define SSR0 =
∑n

t=m+1(a2
t − �̂�0), where �̂�0 = 1

n

∑n
t=m+1 a2

t ,
and SSR1 =

∑n
t=m+1 ê2

t , where {êt} represents the residuals from (8.4). The F-statistic is then
defined as

F(a2
1∶n;m) =

(SSR0 − SSR1)∕m

SSR1∕(n − 2m − 1)
, (8.5)

which is also asymptotically 𝜒
2
m distributed under H0 (Luukkonen et al., 1988).

Another test developed by Tsay (1986) specifically looks for quadratic serial dependence
by incorporating cross-product terms. Let Mt−1 = vech[(1, xt−1,… , xt−p)(1, xt−1,… , xt−p)

′ ].
Then, consider the regression

xt = (1, xt−1,… , xt−p)
′
𝝓 + Mt−1𝜶 + at,

where 𝝓 is a (p + 1) × 1 coefficients vector and 𝜶 is a p(p − 1)∕2 × 1 coefficients vector. If the
AR(p) model is adequate, then 𝜶 should be zero. This can be tested using a standard F-statistic
similar to (8.5), but with [p(p + 1)∕2, n − p − p(p + 1)∕2 − 1] degrees of freedom.

8.2.3.4 Nonparametric Tests for the ARCH Effect

The BDS test (Brock et al., 1996) originated as a test for the detection of nonrandom chaotic
dynamics, but has gained traction as a test for nonlinear serial dependence in financial
time-series. The BDS test is based on a correlation integral. To construct a correlation integral
for a series X1∶n = {xt}n

t=1, define a sequence of m-vectors as xm
t = (xt, xt−1,… , xt−m+1)′, in

which m is the embedding dimension. The correlation integral measures the fraction of pairs
of m-vectors that are close to each other (given some range parameter 𝜖 > 0). As described in
Patterson and Ashley (2000), it counts the number of m-vectors that lie within a hypercube of
size 𝜖 of each other.

Definition 8.9 An empirical correlation integral of order m and range 𝜖 > 0 is

Cm,𝜖
(X1∶n) =

2
nm(nm − 1)

∑
m≤s<t≤n

I(xm
t , x

m
s ; 𝜖), (8.6)

in which nm = n − m + 1, and I(xm
t , x

m
s ; 𝜖) is one if |xt−i − xs−i| < 𝜖 for i = 0,… ,m − 1, and

zero otherwise.

Under the null hypothesis of serial independence, the correlation integral factorizes as Cm,𝜖
=

(C1,𝜖)m. Correlation integrals are U-statistics, so asymptotic theory can readily be applied. The
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BDS test statistic is defined in Zivot and Wang (2007) as

Vm,𝜖
=
√

n
Cm,𝜖

− (C1,𝜖)m

sm,𝜖

,

where sm,𝜖
is an estimate of the asymptotic standard deviation of Cm,𝜖

− (C1,𝜖)m, as derived in
Brock et al. (1996).

Under mild regularity conditions, the BDS statistic converges in distribution to a standard
normal distribution, though convergence can be very slow. As stated in Patterson and Ashley
(2000), convergence for large m requires an extremely large sample size. The null hypothesis
of i.i.d. data is rejected if |Vm,𝜖

| > Z
𝛼∕2. Per Diks (2009), the range parameter 𝜖 is typically set

to 0.5 to 1.5 times the sample standard deviation of the observed series. In practice, the test is
constructed for several values of 𝜖, which are then compared against one another as a stability
check. As an alternative to relying on asymptotic normality, Genest et al. (2007) developed
a rank-based extension of the BDS test whose finite sample p-values can be constructed by
simulation.

The BDS test also functions as a model misspecification test. Brock et al. (1996) shows that
the asymptotic distribution of the test statistic for residuals is the same as that of true innova-
tions. Similar to the aforementioned parametric tests, it is often performed on the residuals of
a fitted model in order to test for any remaining dependence. However, as pointed out by Diks
(2009), though this holds for autoregressive models, it does not hold for models in the ARCH
family. While it is not free of nuisance parameters for GARCH models, Caporale et al. (2005)
found the BDS test to perform very well on the logged squared residuals of a GARCH(1,1)
model.

8.2.3.5 Comparative Performance of Misspecification Tests

Ashley and Patterson (2001) conducted a simulation study of the BDS, Mcleod–Li, Tsay,
Lagrange multiplier, and several other tests over a wide variety of data-generating processes.
They found that the BDS test has the highest power against all alternatives, rendering it very
useful as a so-called nonlinearity screening test, which can detect any residual nonlinear serial
dependence. However, it is not informative as to the type of nonlinear structure that may be
present in the observations. The Tsay test was also found to perform well in the detection of
self-excited threshold autoregression models.

8.3 Multivariate Extensions

The vector autoregression (VAR) is the multivariate analog of the autoregressive model. It
allows simultaneous and dynamic linear dependence across multiple components.

Definition 8.10 A pth order vector autoregression is defined as

yt = 𝝓 +𝚽1yt−1 +…+𝚽pyt−p + at, (8.7)

in which 𝝓 ∈ ℝk, yt, at ∈ ℝk for all t; each 𝚽i is a k × k coefficient matrix; and at is a serially
uncorrelated weakly stationary sequence (white noise) with mean vector zero and nonsingular
k × k covariance matrix 𝚺a.
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8.3.1 Multivariate Volatility

The vector autoregression (8.7) operates under the assumption that the innovations are white
noise, but it allows for nonlinear serial dependence. Such dependence is common in financial
data, particularly multivariate ARCH effects. In this case, we may decompose the linear and
nonlinear dynamics as

yt = 𝝁t + at, at = 𝚺1∕2
t 𝝐t, 𝝐t

iid∼ F(𝟎, I),

in which 𝝁t denotes the conditional mean given the past observations E(yt|yt−1, yt−2,…) (pos-
sibly estimated with a VAR); and 𝝐t represents an i.i.d sequence with mean zero and identity
covariance. As with the univariate ARCH case, we want to consider processes in which the con-
ditional covariance matrix 𝚺t is dependent across time, where 𝚺t = Co𝑣(yt|yt−1, yt−2,…) =
Co𝑣(at|yt−1, yt−2,…). As outlined in Tsay (2014), there are many challenges in multivariate
volatility modeling. The dimension of 𝚺t increases quadratically with k, and restrictions are
needed to ensure 𝚺t is positive definite for all t.

One way to model multivariate volatility is to extend the conventional GARCH models to a
multivariate setting. A simple approach is to model a half-vectorization (vech) of the diagonal
and lower triangle elements of 𝚺t.

Definition 8.11 The VECH GARCH model (Bollerslev et al., 1992) for a k-dimensional
series has volatility defined by the recursion

vech(𝚺t) = vech(𝛀) +
r∑

i=1

Ai vech(𝝐t−i𝝐
′

t−i) +
s∑

j=1

Bj vech(𝚺t−j),

in which 𝛀 is a k × k symmetric, positive definite matrix; and the coefficient matrices Ai and
Bj each have dimension k(k + 1)∕2 × k(k + 1)∕2.

As stated in Jondeau et al. (2007), this model requires estimating on the order of k4 parameters,
and it is difficult to incorporate restrictions that guarantee the conditional covariances 𝚺t will
be positive definite.

One popular model that addresses some of these concerns is the Baba, Engle, Kraft, and
Kroner (BEKK) representation.

Definition 8.12 The BEKK GARCH model (Engle and Kroner, 1995) for a k-dimensional
series has volatility defined by the recursion

𝚺t = ̃𝛀 +
r∑

i=1

̃A
′

i𝝐t−i𝝐
′

t−i
̃Ai +

s∑
j=1

̃B
′

j𝚺t−j
̃Bj,

in which ̃𝛀 is a k × k symmetric, positive definite matrix; and the coefficient matrices ̃Ai and
̃Bj each have dimension k × k.

The major advantage of this model is that 𝚺t is positive definite as long as ̃𝛀 is positive
definite and the sequence is initialized at positive definite values. Estimation includes k(k +
1)∕2 + (r + s)k2 parameters. In certain cases, to reduce the computational burden, the matrices
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̃Ai and ̃Bj are assumed to be diagonal. However, the BEKK model does not scale well, even in
the diagonal case; the number of parameters grows quadratically with the number of variables.
For additional model structures, the interested reader can consult Bauwens et al. (2006), which
conducts a comprehensive survey of multivariate volatility models.

8.3.2 Multivariate Misspecification Testing

Many univariate misspecification tests have multivariate extensions. Referencing Equation
(8.7), the lagged cross-covariance matrices of {at} can be estimated as

Ch =
1
n

n∑
t=h+1

ata
′

t−h.

Let D denote a diagonal matrix with [D]ii = [C0]
1∕2
ii

, then the lagged cross-correlation matrices
of {at} can be estimated as

Rh = D−1ChD−1
.

The Ljung–Box test was extended to a multivariate setting by Baillie and Bollerslev (1990),
to test the hypotheses

H0 ∶ R1 = · · · = Rm = 𝟎 𝑣s. H1 ∶ Rh ≠ 𝟎, for some h = 1,… ,m.

The test statistic recommended by Lütkepohl (2007) is

̄Q({at};m) = n2
m∑

h=1

trace(C
′

hC−1
0 ChC−1

0 )∕(n − h),

which asymptotically follows a 𝜒
2
mk2 distribution under H0. For residuals {ât} from an esti-

mated VARk(p) model, the Ch are defined analogously, as is ̄Q({ât};m), which instead has a
𝜒

2
(m−p)k2 asymptotic distribution under H0. Furthermore, analogous hypotheses and tests can

be conducted for the multivariate version of the ARCH effect based on {a2
t }, {â2

t }, or {�̂�2
t },

where �̂�t = �̂�−1∕2
t ât, for an estimated volatility sequence {�̂�t}.

8.3.3 Granger Causality

In financial applications, it is widely believed (cf. Gallant et al., 1992) that the joint dynam-
ics of stock prices and trading volume can be more informative as to the underlying state
of the stock market than stock prices alone. Many studies have explicitly tested for a causal
link between stock prices and trading volume. The notion of Granger causality, developed by
Granger (1969), can be used to determine whether one time-series helps to predict another. As
a simple example, consider a bivariate time-series {(xt, yt)}n

t=1 specified by the equations

xt = 𝜈1 + 𝜙xt−1 + 𝛾yt−1 + a1t,

yt = 𝜈2 + 𝛽yt−1 + 𝛿xt−1 + a2t

where a1t, a2tiid∼N(0, 𝜎2). The series yt is said to “Granger-cause” xt if 𝛾 ≠ 0.
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More generally, given a prespecified lag length p, consider the marginal model for {xt}
defined by

xt = 𝜈 + 𝜙1xt−1 + 𝜙2xt−2 + · · · + 𝜙pxt−p + 𝛾1yt−1 + 𝛾2yt−2 + · · · + 𝛾pyt−p + at (8.8)

To test for Granger causality, we may test the hypotheses

H0 ∶ 𝛾1 = · · · = 𝛾p = 0 𝑣s. H1 ∶ 𝛾h ≠ 0 for some h = 1,… , p.

As a test statistic, one can use the sum of squared residuals from (8.8)

RSSFull =
n∑

t=1

â2
t ,

which can then be compared with the sum of squared residuals from a univariate autoregression
of {xt}, for example,

xt = 𝜈 + 𝜙1xt−1 + 𝜙2xt−2 + · · · + 𝜙pxt−p + ut, RSSNull =
n∑

i=1

û2
i .

Then a F-statistic is constructed as

F({(xt, yt)}; p) =
(RSSNull − RSSFull)∕p

RSSFull∕(n − 2p − 1)
(8.9)

which is asymptotically distributed as F(p, 2p − 1) under H0. There are several additional
methods to test for Granger causality, but simulation studies by Geweke et al. (1983) suggest
that (8.9) achieves the best performance. For an overview of additional tests, the interested
reader is referred to Chapter 11 of Hamilton (1994).

8.3.4 Nonlinear Granger Causality

The aforementioned test for Granger causality will only elucidate whether {yt} can help to
predict {xt} linearly. Potential nonlinear relationships will remain undetected. Consider the
following example, procured from Baek and Brock (1992),

xt = 𝛽yt−qxt−p + at

There exists an obvious but nonlinear relationship that will not be evident in Granger causality
testing. In a similar fashion to the BDS test, Baek and Brock (1992) develop a test for nonlinear
Granger causality based on the correlation integral (8.6).

Definition 8.13 (Nonlinear Granger Causality) {yt} does not nonlinearly Granger-cause
{xt} if:

Pr(|xt − xs| < 𝜖1||xt,p − xs,p| < 𝜖1, |yt,q − ys,q| < 𝜖2) = Pr(|xt − xs| < 𝜖1||xt,p − xs,p| < 𝜖1),

in which zt,m = (zt−1,… , zt−m). In words: “Given 𝜖1 and 𝜖2, q lags of Y do not incrementally
help to predict next period’s value given p lags of X.”
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The notion of nonlinear Granger causality has been extensively developed to analyze rela-
tionships in finance. In particular, Hiemstra and Jones (1994) examine the relationship between
aggregate stock prices and trading volume.

They expand upon Baek and Brock (1992) and give a detailed description of a hypothesis
test (henceforth, the H-J test).

Under the null hypothesis of the H-J test, it is assumed that {Xt} does not nonlinearly
Granger cause {Yt}. This is determined by testing conditional independence using finite lags
𝓁x and 𝓁y:

Yt+1|X𝓁x
t ,Y

𝓁y
t ∼ Yt+1|Y𝓁y

t ,

where X𝓁x
t = (Xt−𝓁x+1,… ,Xt) and, Y

𝓁y
t = (Yt−𝓁y+1,… ,Yt). Assuming the bivariate

time-series {Xt,Yt} is strictly stationary, the H-J test can be interpreted as a statement about

the invariant distribution of the (𝓁x + 𝓁y + 1) dimensional random vector Wt = (X𝓁x
t ,Y

𝓁y
t ,Zt),

where
Zt = Yt+1. For notational ease, we will drop the time index and refer to this vector as
W = (X,Y ,Z). Under the null hypothesis, the joint probability density function fX,Y ,Z(x, y, z)
and its marginals must satisfy:

fX,Y ,Z(x, y, z)
fX,Y (x, y)

=
fY ,Z(y, z)

fY (y)
⇐⇒

fX,Y ,Z(x, y, z)
fY (y)

=
fX,Y (x, y)

fY (y)
fY ,Z(y, z)

fY (y)
, (8.10)

for every (x, y, z) in the support of (X,Y ,Z). Correlation integrals are used to measure the
discrepancies between the left and right sides of (8.10). Given 𝜖 > 0, the correlation integral
for a multivariate random vector is the probability of finding two independent realizations of
the vector V: V1 and V2, at a distance less than or equal to 𝜖, that is,

C
𝑣
(𝜖) = P(‖V1 − V2‖ ≤ 𝜖).

This leads to the test case:
CX,Y ,Z(𝜖)
CX,Y (𝜖)

=
CY ,Z(𝜖)
CY (𝜖)

. (8.11)

It is then estimated via the sample analog:

CW,𝜂
(𝜖) =

2
n(n − 1)

∑∑
i<j

I(‖Wi − Wj‖ ≤ 𝜖). (8.12)

However, as shown in Diks and Panchenko (2006), in certain situations this test tends to
reject too often under the null hypothesis of no Granger causality. Diks and Panchenko (2006)
show that the test statistic used in Hiemstra and Jones (1994) is biased and converges to a
nonzero limit, while the variance decreases to zero, which will generate significant values for
the test statistic as the length of the series increases. An important instance in which this occurs
i between two series with independent ARCH effects.

Instead, Diks and Panchenko (2006) construct a new test statistic that measures dependence
between X and Z given Y = yi locally for each yi. Define the local density estimator as:

f̂W (Wi) =
(2𝜖)dW

n − 1

∑
j,j≠i

IW
ij ,
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where IW
ij = I(‖Wi − Wj‖ < 𝜖). The test statistic can then be expressed as:

Tn(𝜖n) =
(n − 1)
n(n − 2)

∑
i

( f̂ X,Y ,Z(Xi,Yi,Zi) f̂ Y (Yi) − f̂ X,Y (Xi,Yi) f̂ X,Y (Xi,Yi) f̂ Y ,Z(Yi,Zi)).

The test is shown to be consistent for dx = dy = dz = 1, and bandwidth chosen as:

𝜖n = Cn−𝛽 ,

for any C > 0 and 𝛽 ∈ ( 1
4 ,

1
3 ). Details of derivation for the optimal choice of C are discussed

in Diks and Panchenko (2006). The authors then show that under these conditions, the test is
asymptotically normally distributed:√

n
Tn(𝜖n) − q

Sn

d
→N(0, 1)

where q = E( fX,Y ,Z(X,Y ,Z) fY (Y) − fX,Y (X,Y) fY ,Z(Y ,Z)); and Sn is an autocorrelation robust
estimate of the asymptotic variance. They repeat the empirical study of Hiemstra and Jones
(1994) and find weaker evidence of nonlinear Granger causality between S&P 500 returns and
volume.

8.4 Copulas

Suppose that we have two random variables X and Y , which we use to create the random vector
Z = (X,Y)′. Then the joint distribution of Z can be decomposed into two parts, one that only
depends on the marginal distributions FX(x) and FY (y), and another that is only associated with
the dependence between X and Y . The latter is referred to as the copula. More formally, we
have the following definition.

Definition 8.14 (Sklar’s Theorem (Sklar, 1959)) Let X and Y be continuous random vari-
ables with marginal distributions FX and FY. Furthermore, let U and V be uniform random
variables such that U = FX(X) and V = FY (Y). We then define the copula C of (X,Y) as the
joint distribution of (U,V).

One way to model the dependence between two random variables is through the use of a
copula. As can be seen from Definition 8.14, a copula is a multivariate distribution for which all
marginal distributions are uniform. Thus, copulas are a natural tool for modeling dependence
between two random variables since we can ignore the effects of their marginal distribu-
tions. For instance, we can express Kendall’s tau and Spearman’s rho coefficients in terms of
the copula.

Theorem 8.1 Let X and Y be continuous random variables with copula C. Then, if we let
𝜏(X,Y) and 𝜌S(X,Y) represent their corresponding Kendall’s tau and Spearman’s rho coeffi-
cients, we have the following equations:

𝜏(X,Y) = 4
∫ ∫[0,1]2

C(u, 𝑣) dC(u, 𝑣) − 1,

𝜌S(X,Y) = 12
∫ ∫[0,1]2

u𝑣 dC(u, 𝑣) − 3 = 12
∫

1

0 ∫

1

0
C(u, 𝑣) du d𝑣 − 3.
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Proof. The proof for these equalities can be found in Embrechts et al. (2003).

Below are some useful notes regarding copulas.

• C(0, 𝑣) = C(u, 0) = 0.
• C(1, 𝑣) = 𝑣 and C(u, 1) = u.
• For all 0 ≤ u1 < u2 ≤ 1 and 0 ≤ 𝑣1 < 𝑣2 ≤ 1, we have that

C(u2, 𝑣2) − C(u1, 𝑣2) − C(u2, 𝑣1) + C(u1, 𝑣1) > 0,

which implies that C is increasing in both variables.
• Copulas satisfy the following Lipschitz condition:

|C(u2, 𝑣2) − C(u1, 𝑣1)| ≤ |u2 − u1| + |𝑣2 − 𝑣1|.
8.4.1 Fitting Copula Models

There are numerous methods for fitting a copula model to data, including parametric, semi-
parametric, and nonparametric (Choroś et al., 2010; Kim et al., 2007). Suppose we wish to fit
bivariate data {(xi, yi)}n

i=1 to a copula C. In many cases, it is more natural to work on the den-
sity scale and with the corresponding copula density. The copula density c is obtained through
differentiating the copula C, yielding the following relation between the joint density f (x, y)
and marginal densities fX and fY :

f (x, y) = c[FX(x),FY (y)]⋅fX(x)⋅fY (y).

First, suppose that we believe the marginal distributions and copula to belong to known
families that can be indexed by parameters 𝜃1, 𝜃2, and Ω respectively. Since we are selecting a
model from a known family, we can select the best model through maximum likelihood. For
this, we select (�̂�1, �̂�2,

̂Ω) so as to maximize

L(𝜃1, 𝜃2,Ω) =
n∑

i=1

log[c (FX(xi|𝜃1),FY (yi|𝜃2)|Ω)] + n∑
i=1

log( fX(xi|𝜃1)) +
n∑

i=1

log( fY (yi|𝜃2)).

The typical maximum likelihood approach would attempt to estimate 𝜃1, 𝜃2, and Ω all at once.
However, the inference function for margins (IFM) method of Joe (1997) estimates the param-
eters in sequence. First, the parameters for the marginal distributions are estimated to obtain
�̂�1 and �̂�2. Then, these estimates are used to estimate Ω, which maximizes

L(Ω) =
n∑

i=1

log
[
c
(
FX(xi|�̂�1),FY (yi|�̂�2)|Ω)] .

The IFM method has a significant computational advantage to maximum likelihood estimation,
and Joe (1997) shows that it is almost as efficient as maximum likelihood estimation in most
cases.

If, however, the model is misspecified because of an incorrect marginal model choice, then
the maximum likelihood estimates may lose their efficiency, and may in fact not be consistent
(Kim et al., 2007). For this reason, semiparametric approaches have also been suggested for
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fitting copula models. In this setting, we usually have enough data to make accurate inferences
about the marginal distributions, but not enough to easily model the intervariable dependence.
Thus, we will assume that the copula belongs to a family that can be indexed by parameter Ω,
while no specification about the marginals is made. The approach taken by Genest et al. (1995)
fits the marginal distributions by using the empirical distribution function to get estimates F̂X
and F̂Y . Then, the fitted copula is selected so as to have parameter ̃Ω, which maximizes

L(Ω) =
n∑

i=1

log
[
c
(
F̂X(xi), F̂Y (yi)|Ω)] .

In Genest et al. (1995), it is shown that the estimate ̃Ω is consistent and asymptotically normal.
Furthermore, approaches to estimate the variance of the ̃Ω estimator are also presented.

Finally, there are nonparametric approaches that can be used to fit copula models. Unlike the
marginals, the copula is a hidden model, and thus selecting an appropriate parametric model
is difficult. Thus, employing nonparametric methods is a natural choice. In this setting, many
approaches fit the copula itself instead of the density because of increased rates of convergence.
The natural starting point is to work with the empirical copula process:

Ĉn(u, 𝑣) =
1
n

n∑
i=1

1
{

xi ≤ F̂−1
X (u), yi ≤ F̂−1

Y (𝑣)
}
.

For the case where C is the independence copula, Deheuvels (1979) shows consistency and
asymptotic normality for the empirical copula; whereas Fermanian et al. (2004) show consis-
tency for a more general class of copulas, as well as consistency when using kernel functions
to approximate the copula. However, when using kernel approaches, care must be taken when
dealing with the boundary, so as to reduce the effect of boundary bias associated with kernels.
This issue has been addressed through the use of locally linear kernels in Chen and Huang
(2007).

8.4.2 Parametric Copulas

The simplest copula to work with is the product copula C(u, 𝑣) = u𝑣. This corresponds to the
random variables X and Y being independent, and thus is also commonly referred to as the
independence copula. Other popular copulas include the Gaussian, t, and Archimedean copu-
las. The Gaussian copula and some Archimedean copulas include the independence copula as
a special case. Additionally, the t copula contains the independence copula as a limiting case.

If the vector (X,Y)′ has a bivariate normal distribution, then all of the dependence between
X and Y is captured by the correlation matrix Ω. Thus, the copulas for bivariate normal random
vectors can be parameterized by their correlation matrix, C(⋅ |Ω). The copulas that are created
in such a manner are called Gaussian copulas. If the random vector (X,Y)′ has a Gaussian
copula, then it is said to have a meta-Gaussian distribution; this is because it is not required
that the univariate marginal distributions be normal. For a given correlation matrix, Ω, the
Gaussian copula’s density, c(u, 𝑣|Ω), is given by

1√
det(Ω)

exp

{
−

1
2

(
Φ−1(u)
Φ−1(𝑣)

)′
(Ω−1 − I2)

(
Φ−1(u)
Φ−1(𝑣)

)}
,

where Φ−1 is the standard normal quantile function and I2 is the two-dimensional identity
matrix. Fitting this copula to a given dataset can be accomplished by using any of the
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techniques of Section 8.4.1. In this case, we can also directly estimate the correlation matrix
by using Kendall’s tau or Spearman’s rho. Using Kendall’s tau, we have the following estimate
for the correlation matrix:

Ωi,j = sin
{
𝜋

2
𝜌
𝜏
(Zi,Zj)

}
(8.13)

where Z = (Z1,Z2)′ = (X,Y)′. Once this calculation has been carried out, we can either directly
use this estimate of Ω, or use the estimate as a starting value for maximum likelihood or
pseudo-maximum likelihood estimation. A similar relation exists for Spearman’s rho and can
be found in Ruppert (2015).

In a similar fashion, we can define a copula that is based upon the bivariate t-distribution.
This distribution is completely described by its correlation matrix Ω along with a shape param-
eter 𝜈. The parameter 𝜈 affects both the marginal distributions as well as the dependence, and
must thus be included in the copula parameterization, C(⋅|𝜈,Ω). A random vector that has a
t-copula is said to have a t-meta distribution.

Regardless of which approach we choose to employ to fit the model, there is a relatively
simple way to obtain an estimate of the correlation matrix, and it closely resembles that used
for the Gaussian copula. Using Equation 8.13, we obtain a matrix that we refer to as Ω(1). There
is a chance that the matrix Ω(1) is not positive definite because it has nonpositive eigenvalues.
In this case, we have that Ω(1) = OTD(1)O, where D(1) is a diagonal matrix of eigenvalue and
O is an orthogonal matrix of the corresponding eigenvectors. To obtain positive eigenvalues,
we transform D(1) to D(2) by D(2)

i,i
= max(𝜖,D(1)

i,i
) for some small positive constant 𝜖. Then

Ω(2) = OTD(2)O is a positive definite matrix; however, its diagonal entries may not be equal
to one. To fix this, we multiply the ith row and column by (Ω(2)

i,i
)−1∕2. After performing these

steps, we are left with a true correlation matrix Ω. We can then estimate the shape parameter
by holding Ω constant and maximizing the following equation:

L(Ω, 𝜈) =
n∑

i=1

log
[
c
(
F̂X(xi), F̂Y (yi)|Ω, 𝜈)] .

The final class of copulas we will discuss are Archimedean copulas. This class of copula
provides modeling characteristics that are not available with either the Gaussian or t-copulas.

Definition 8.15 A copula C is said to be Archimedean if it has the following representation:

C(u, 𝑣) = 𝜙
−1[𝜙(u) + 𝜙(𝑣)].

where 𝜙 ∶ [0, 1] → [0,∞] is a function, called the generator, with the following properties;

1. 𝜙 is a decreasing convex function.
2. 𝜙(0) = ∞ and 𝜙(1) = 0.

Depending on the choice of generator, we are able to model a wide array of dependencies.
For instance, the Frank copula can be obtained by selecting

𝜙(t|𝜃) = − log

{
e−𝜃t − 1

e−𝜃 − 1

}
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Table 8.2 A table of common Archimedean copulas

Copula 𝜙(t|𝜃) C(u, 𝑣) Range

Clayton 1
𝜃
(t−𝜃 − 1) max({u−𝜃 + 𝑣

−𝜃}−1∕𝜃
, 0) 𝜃 ∈ [−1,∞)\{0}

Ali–Mikhail–
Haq

log

(
1 − 𝜃(1 − t)

t

)
u𝑣

1 − 𝜃(1 − u)(1 − 𝑣)
𝜃 ∈ [−1, 1)

Joe − log(1 − (1 − t)𝜃) 1 −
(
(1 − u)𝜃 + (1 − 𝑣)𝜃 − (1 − u)𝜃(1 − 𝑣)𝜃

)1∕𝜃
𝜃 ∈ [1,∞)

with 𝜃 ∈ ℝ. The choice of generator gives the following copula:

C(u, 𝑣|𝜃) = −
1
𝜃

log

{
1 +

(e−𝜃u − 1)(e−𝜃𝑣 − 1)
e−𝜃 − 1

}
.

By noting that lim
𝜃→0

𝜙(t|𝜃) = − log(t), we have that as 𝜃 approaches 0, the Frank copula con-

verges to the independence copula; whereas as 𝜃 → −∞, we obtain the copula for the ran-
dom vector (U, 1 − U)′, C(u, 𝑣) = max(0, u + 𝑣 − 1), which is the copula for perfect negative
dependence. Similarly, as 𝜃 → ∞, we obtain the copula for the random vector (U,U)′, which
has perfect positive dependence, C(u, 𝑣) = min(u, 𝑣).

Now let us consider the generator 𝜙(t|𝜃) = [− log(t)]𝜃 for 𝜃 ≥ 1. This gives the Gumbel
copula

C(u, 𝑣|𝜃) = exp {−([log(u)]𝜃 + [log(𝑣)]𝜃)1∕𝜃}.

Selecting 𝜃 = 1 results in the independence copula. Also, note that as 𝜃 → ∞, the Gumbel
copula converges to the copula for perfect positive dependence. However, unlike the Frank
copula, the Gumbel copula is unable to model negative dependence.

Table 8.2 contains some additional examples of Archimedean copulas along with their gen-
erators.

8.4.3 Extending beyond Two Random Variables

So far, we have only seen how to model the dependence between two random variables. Natu-
rally, we would also like to model dependence between m ≥ 3 random variables. In this case,
our copula would be a function C ∶ [0, 1]m → [0, 1]. However, some difficulties arise when try-
ing to extend the tools for creating bivariate copulas to multivariate settings. For instance, Gen-
est et al. (1995) show that if C is a bivariate copula and Fm(x1,… , xm), Gn(y1,… , yn) are mul-
tivariate marginal distributions, then the only copula that satisfies H(x1,… , xm, y1,… , yn) =
C(Fm(x),Gn(y)) is the independence copula.

Because of these difficulties, we will only be considering ways to extend Archimedean cop-
ulas, as these extensions still remain relatively easy to analyze. More specifically, we will
consider the exchangeable Archimedean copula (EAC), nested Archimedean copula (NAC),
and pair copula construction (PCC).
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Fully
nested

Partially
nested

Figure 8.4 Tree representation of the fully nested (left) and partially nested (right) Archimedean copula
construction. Leaf nodes represent uniform random variables, while the internal and root nodes represent
copulas. Edges indicate which variables or copulas are used in the creation of a new copula.

To start, we consider the simplest extension, EACs. As with the bivariate Archimedean
copula, these are tied to a generating function 𝜙. In this case, we have that

C(u1,… , um) = 𝜙
−1{𝜙(u1) + · · · + 𝜙(um)}.

This extension, however, comes at the cost of a greater restriction on the generator 𝜙. This
restriction is d-monotonic; see McNeil and Nešlehová (2009) for more information.

NACs provide more flexibility than EACs because they allow for the combination of differ-
ent types of bivariate copulas to obtain higher order copulas. The bivariate copulas are com-
bined hierarchically and thus allow for a convenient graphical representation. Figure 8.4 shows
a graphical representation for fully and partially nested Archimedean copulas in the case of
four variables. As can be seen from Figure 8.4, NACs only allow one to model m − 1 copulas.
Thus, all other possible interactions are predefined by the hierarchical structure. For instance,
in the partially nested structure, both (u1, u3) and (u1, u4) are modeled by c2,1(u1, u2, u3, u4).
Fitting a general NAC can be done with maximum likelihood, but in general this must be
done recursively and becomes extremely computationally intensive as the number of variables
increases. Similarly, sampling from such copulas is also a difficult task (Aas and Berg, 2009),
but in the case of fully and partially nested models Hofert (2010) presents algorithms that are
efficient for sampling any number of variables.

We finally consider PCCs, which like NACs are created by a hierarchical process. The
most popular types of PCCs are canonical vines and drawable vines, commonly referred to
as C-vines and D-vines, respectively. For both C- and D-vines, there exist analytic expressions
for the densities; see Czado (2010). Thus, both models can be fit by maximum likelihood; how-
ever, as with NACs, this must be done in a recursive fashion and can thus be computationally
expensive. Unlike NACs, drawing samples from PCCs is much simpler (Aas and Berg, 2009).
Furthermore, using PCCs, we are able to model all m(m − 1)∕2 copulas, which is not possible
when using NAC extensions. Figure 8.5 shows the graphical representations of C- and D-vines
on four variables.
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D-VineC-Vine

Figure 8.5 Graphical representation of the C-vine (left) and D-vine (right) Archimedean copula con-
struction. Leaf nodes labeled ui represent uniform random variables, whereas nodes labeled ci,j represent
the jth copula at the ith level. Edges indicate which variables or copulas are used in the creation of a new
copula.

8.4.4 Software

There are a number of software packages to choose from when working with copulas. Here, we
mention a few for working with copulas in R. All of these packages are designed to perform sta-
tistical inference of various copula models. They also all have methods for performing model
estimation and random sampling. The copula package (Hofert et al., 2014) works with ellip-
tical, Archimedean, and a few other copula families. VineCopula (Schepsmeier et al., 2012)
is designed to perform analysis of vine copulas, while CDVine (Brechmann and Schepsmeier,
2013) is specialized for C- and D-vines.

8.5 Types of Dependence

In Section 8.4, we showed that copulas can be used to model the dependence between random
variables. We now turn our attention to the dependence structure itself, and when appropriate
make connections to copulas. We first describe different types of dependence, and then provide
theoretical background.

When dealing with only two random variables, the concept of positive and negative depen-
dence is more straightforward. Suppose that we have random variables X and Y , then positive
dependence means that an increase/decrease in the value of X is likely to accompany an
increase/decrease in the value of Y . However, if X and Y are negatively dependent, then an
increase/decrease in X is likely to be accompanied by a decrease/increase in Y .

8.5.1 Positive and Negative Dependence

We now examine ways to extend the notion of positive and negative dependence to more than
two random variables. In this section, we will use the following notation; if x, y ∈ ℝd, we say
that x > y if xi > yi for all i = 1, 2,… , d.
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In the bivariate case, the random vector X = (X1,… ,Xd) is positively dependent if all of
its components tend to move in the same direction. However, when d > 2, there are many
different interpretations.

Definition 8.16 A random vector X = (X1,… ,Xd) is positive upper orthant dependent if for
all x ∈ ℝd

P(X > x) ≥
d∏

i=1

P(Xi > xi). (8.14)

Similarly, if

P(X ≤ x) ≥
d∏

i=1

P(Xi ≤ xi), (8.15)

we say that X is positive lower orthant dependent.

If we generalize the concept of an orthant, we obtain another form of positive dependence.

Definition 8.17 A set U is called an upper set if x ∈ U and y > x implies that y ∈ U . The
complement of an upper set is called a lower set.

It should be noted that since the lower orthant is not the complement of the upper orthant,
it is not a lower set. Then, the concept of positive upper/lower set dependence can be easily
expressed using inequalities similar to those in Equations 8.14 and 8.15.

Definition 8.18 A random vector X = (X1,… ,Xd) is said to be positive upper set dependent,
or positive lower set dependent, if

P(X ∈
⋂

Uk) ≥
∏

k

P(X ∈ Uk)

and
P(X ∈

⋂
Lk) ≥

∏
k

P(X ∈ Lk)

respectively, where Uk are upper sets and Lk are lower sets.

Unlike positive dependence, the concept of negative dependence is not as easily extended to
multiple random variables. For instance, it is impossible for more than two random variables to
have perfect negative dependence. To see this, suppose that X1 has perfect negative dependence
with X2 and X3; this would imply that X2 and X3 are positively dependent.

One way to obtain a type of negative dependence is by reversing the inequalities in Equations
8.14 and 8.15. This results in what are called negative upper orthant and negative lower orthant
dependence, respectively. However, conditions under which these inequalities hold are diffi-
cult to show when d > 2. One such condition, based upon the behavior of the multinomial
distribution, is given by Block et al. (1982).

The versions of positive and negative dependence for multiple random variables presented
here are elementary. There are notions of positive/negative association that are related to the
covariance structure, as well as other less intuitive concepts such as setwise dependence. Fur-
ther details about these and other types of dependence can be found in the book by Drouet
Mari and Kotz (2001).
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8.5.2 Tail Dependence

One type of dependence that we will discuss in more detail has major applications in finance.
Tail dependence describes how likely it is that a set of random variables will simultaneously
take on extreme values. For instance, when working with a portfolio, tail dependence provides
information on how likely it is to observe large, simultaneous losses from a portfolio’s assets.

Suppose that we have random variables X and Y with distributions FX and FY , respectively,
and let p ∈ (0, 1). In the most basic case, upper tail dependence is concerned with the following
quantity:

u(p) = P(X > F−1
X (p)|Y > F−1

Y (p)) =
1 − 2p + C(p, p)

1 − p
(8.16)

where C(⋅, ⋅) is the copula for X and Y . Similarly, lower tail dependence is concerned with the
quantity

l(p) = P
(
X ≤ F−1

X (p)|Y ≤ F−1
Y (p)
)
=

C(p, p)
p

. (8.17)

Let us assume that the variables X and Y measure the amount lost from the components
of a two-asset portfolio. We then say that X and Y are asymptotically independent if u∗ =
limp→1u(p) exists and is equal to zero. Otherwise, we say that X and Y are asymptotically
dependent. Poon et al. (2004) provide a nonparametric method for estimating the value of u∗, as
well as a way to measure upper tail dependence even if X and Y are asymptotically independent.
They also demonstrate the impact of knowing whether variables are asymptotically dependent
or independent on the conclusions drawn from statistical analyses.

We now turn our attention to the type of dependence that is under consideration in
Equation 8.17. As with Equation 8.16, we will say that X and Y are asymptotically independent
if l∗ = limp→0l(p) exists and is equal to zero, and asymptotically dependent if the limit exists
and is nonzero. As mentioned by Schmid and Schmidt (2007), one issue with this method is
that it only examines values along the diagonal of the copula. Thus, the quantity

C(p, p2)
p2

might have a different limit as p → 0 than l∗. For this reason, Schmid and Schmidt (2007)
propose the following measure of tail dependence, which is closely related to Spearman’s rho:

𝜌L = lim
p→0

3

p3 ∫

p

0 ∫

p

0
C(u, 𝑣) du d𝑣. (8.18)

The measures discussed so far have only been for bivariate processes; however, in financial
cases, multivariate approaches are typically more applicable. Extensions to higher dimensions
are rather simple for Equations 8.16 and 8.17, requiring only a change in the set of variables
over which we condition and those for which we wish to find the probability of observ-
ing an extreme event. Schmid and Schmidt (2007) provide a general multivariate version of
Equation 8.18.

Financial applications are typically multivariate and consider a portfolio of assets rather
than individual assets. Such portfolios may exhibit complex dependencies and evolutions. The
methods described in this chapter allow robust analysis of non-Gaussian and time-series data,
and provide intuitive and tractable tools for multivariate data. They also make relatively weak
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assumptions about the underlying dependence structure to maintain broad applicability for
financial data analysis.
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Their Applications in Financial
Modeling

Alexander Kreinin
Risk Analytics, IBM, Canada

9.1 Introduction

Multivariate risk factor models set the foundation of financial risk measurement. The modern
financial theory often recommends jump-diffusion models to describe dynamics of the indi-
vidual risk factors, such as interest rates, foreign exchange rates, stock indices, and volatility
surfaces (Kou, 2002; Lipton and Rennie, 2008; Merton, 1976; Musiela and Rutkowsky, 2008),
One of the most popular model of jumps, the Poisson model, requires introduction of a code-
pendence structure in the multivariate setting.

The multivariate Gaussian diffusion models are traditionally popular in financial applica-
tions (Musiela and Rutkowsky, 2008). In this class of models, the dynamics of the risk factors
are described by the Gaussian stochastic processes. The calibration problem in this case can
be reduced to the estimation of the drift vector and the diffusion matrix describing the covari-
ance structure of the risk factor space. The only constraint imposed on the covariance matrix
is nonnegativity of its eigenvalues.

It is very well known that calibration of the models for equity derivatives pricing can be
performed satisfactorily in the class of jump-diffusion processes (Kou, 2002; Kyprianou
et al. 2005; Merton, 1974). Once the jump processes are introduced, the calibration problem
becomes more challenging and, technically, more demanding. In particular, an admissible set
of model parameters is described by more sophisticated conditions: not only must an observed
covariance matrix have nonnegative eigenvalues but the elements of this matrix should also
obey additional inequalities depending on the intensities of the jump processes. The nature
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of these new constraints and their computation is discussed in Griffiths et al.(1979), Whitt
(1976), and Duch et al. (2014).

The computation of the aditional constraints on the elements of the covariance matrix
appeared to be closely related to the analysis of the extreme joint distributions having
maximal and minimal correlations. Our approach to the computation of the extreme joint
distributions is, in spirit, very close to that developed by Frechet (1951) and Whitt (1976).
The only difference is that we propose a pure probabilistic method for the computation of the
joint probabilities, based on the Strong Law of Large Numbers and a well-known result on
optimal permutations that can be derived from Hardy et al. (1952).

Practitioners often set the calibration problem as a matching of the intensities and corre-
lations of the components. One of the difficulties of this problem for multivariate Poisson
processes is presented by negative elements of the correlation matrix. We propose a solution
to this problem having the following two ingredients:

1. A construction of the joint distribution with extreme correlations at some future point in
time, usually at the end of time horizon, T .

2. A backward simulation of Poisson processes in the interval [0, T].

The resulting multivariate Poisson process is a Markov process but not infinitely divisible.1

The chapter is organized as follows. In Section 9.2, we discuss some classes of risk factor
models with jump processes and their existing and potential applications in different areas of
financial risk management. In this section, we discuss some technical obstacles in calibration
associated with negative correlations. In Section 9.3, the common shock model and the mixed
Poisson model are presented in the bivariate case. The multivariate case of the CSM is dis-
cussed in Section 9.4. The first model, traditionally used in the actuarial science, introduces
correlations by the simultaneous jumps in the components of the process. This model is too
restrictive; it does not solve the problem with negative correlations. The second model intro-
duces a much more general class of processes having time-dependent correlations between the
components. This model addresses the negative correlation problems but might have a slow
convergence to the stationary distribution, making the calibration problematic.

In Section 9.4, we describe the backward simulation algorithm and discuss the calibration
problem for the parameters of the model. We also compare the backward simulation approach
with the forward simulation. One of the ingredients of the solution, the computation of the
lower and upper bounds for the correlation coefficient, is described in Section 9.5, where
the computation of the extreme joint distribution and its support is presented. The compu-
tation of the extreme distribution allows one to find the boundaries for the correlation coeffi-
cient of the corresponding components of the multivariate Poisson process. We also describe
a numerical scheme for the approximation of the joint distribution and computation of the
boundaries for the correlation coefficients. These results, leading to the additional necessary
conditions on the elements of the correlation matrix, are obtained with the help of a version of
the Frechet–Hoeffding theorem2 presented in Section 9.5.4.

Implementation of the algorithm for the computation of the extreme distributions requires
continuity bounds of the approximation of the joint distribution by a distribution with bounded
support. These bounds are obtained in Section 9.5.5.

1 Despite that each component of the process is an infinitely divisible Poisson process.
2 This version of the theorem is new, to the best of our knowledge.
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In Section 9.6, we demonstrate a few patterns of the support of a bivariate Poisson distri-
bution typical for maximal and minimal correlations. These examples are computed using
approximation of the joint extreme distribution analyzed in Section 9.5.5. In Section 9.7,
we extend the backward simulation (BS) approach to the processes having both Poisson and
Wiener components. The idea behind this extension is to bring together, in a common frame-
work, both Poisson and Gaussian processes and to develop a unified simulation algorithm for
scenario generation with diffusion and pure jump components. In the Poisson–Wiener case,
the time structure of correlations under BS simulation appeared to be linear, as in the case of
the multivariate Poisson processes. This feature of the BS simulation put distance between our
approach and the traditional forward simulation keeping the correlation constant over time.

The chapter concludes with comments on possible extensions of the BS an method and on
the interplay between the probabilistic approach and the infinite-dimensional linear program-
ming optimization problem describing the extreme measures.

9.2 Poisson Processes and Financial Scenarios

In this section, we review some existing and potential applications of the multivariate Pois-
son processes in financial modeling. The Poisson and the Gaussian risk factor models can be
integrated into a general scenario generation framework for portfolio risk measurement. In
this framework, the codependence structure of the risk factors is usually described by their
correlation matrix.

The correlation matrix of the risk factors contains three submatrices: Cgg describing
the Gaussian components, Cpp describing the Poisson component, and Cgp describing the
cross-correlations of the risk factors.

Such a complex model for the risk factor space can be used in the integrated market–credit
risk portfolio risk framework as well as for pricing of financial derivatives. For operational
risk modeling, the matrix Cpp should be sufficient.

9.2.1 Integrated Market–Credit Risk Modeling

Monte Carlo methods form the industry standard approach to the computation of risk measures
of credit portfolios. The conceptual model of the risk factors dynamics is a combination of
the Merton model, developed in Merton (1974), and the conditional independence framework
(Vasicek 1987, 2002).

The first dynamic integrated market–credit risk modeling framework was developed in Iscoe
et al. (1999) for the Gaussian risk factors. Each credit-risky name in the portfolio is character-
ized by a credit-worthiness index described as a linear combination of the systemic components
dependent on market risk factors, macroeconomic indices, and an idiosyncratic component.
Calibration of the model is reduced to a series of the default boundary problems that must
be solved for each name in the portfolio independently of the other names. This problem is
equivalent to the generalized Shiryaev problem (Jaimungal et al., 2013) studied in the Gaus-
sian case. In Jaimungal et al. (2013), it was demonstrated that adding a single random jump
at time t = 0 to the Brownian motion process allows one to cover a very rich class of default
time distributions including, in particular, finite mixture of gamma distributions.
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Introduction of the general jump processes in the context of credit portfolio modeling leads
to a nontrivial calibration problem streaming from heterogeneity of the risk factor space.

Pricing of credit derivatives is also based on the conditional-independence framework (Avel-
laneda and Zhu, 2001; Hull and White, 2001; Iscoe and Kreinin, 2006, 2007), where random-
ized, time-dependent default intensities of jumps describe the default process. The number of
components of this process is equal to the number of names in the basket credit derivative.

9.2.2 Market Risk and Derivatives Pricing

Geometric Brownian motion has been widely used in the option-pricing framework to model
returns of the assets. In Merton (1976), Merton proposed a jump-diffusion model to describe
better a phenomenon called volatility smile in the option markets. However, he could not
address the leptokurtic feature that the return distribution of assets may have a higher peak
and two (asymmetric) heavier tails than those of the normal distribution.

To incorporate both of them, Kou (2002) proposed a double exponential jump-diffusion
model. The model is simple enough to produce analytical solutions for a variety of option-
pricing problems, including call and put options, interest rate derivatives, and path-dependent
options. Detailed accounts of the development in the area of option pricing using jump models
can be found in Cont and Tankov (2003, 2006), Boyarchenko and Levendorski (2002), and
Carr and Madan (1998). An alternative class of models with non-Gaussian innovations is
discussed in Barndorff-Nielsen and Shephard (2001) and Kyprianou et al. (2005).

Notice that risk-neutral pricing of basket derivatives with several underlying instruments in
the jump-diffusion framework will require a model with several correlated jump processes.

9.2.3 Operational Risk Modeling

Dependent Poisson and compound Poisson processes find many applications in the area of
operational risk (OR) modeling (see Aue and Kalkbrener, 2006); Badescu et al., 2013, 2015;
Böcker and Klüppelberg, 2010; Chavez-Demoulin et al., 2006; Embrechts and Puccetti, 2006;
Panjer, 2006; Peters et al., 2009; Shevchenko, 2011; and references therein). In the OR mod-
els, Poisson processes describe random operational events in the business units of a financial
organization (Chavez-Demoulin et al., 2006; Lindskog and McNeil, 2001; Nešlehovà et al.,
2006; Peters et al., 2009; Shevchenko, 2011). The result of each operational event is a random
loss. Thus, the loss process is represented as a multivariate compound Poisson process.

While modeling credit events and credit derivatives pricing in the integrated market–credit
risk framework are, probably, the most complicated tasks in financial risk measurement, the
isolated operational risk-modeling problem is relatively simple. The operational risk frame-
work is based on the assumption that operational losses of the jth business unit, (j = 1, 2,… , J),
are described by a compound process

L( j)
t =

N( j)
t∑

k=1

𝜉
( j)
k
, j = 1, 2,… , J, (9.1)
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where N( j)
t is the number of operational events occurred by time, t; J is the number of business

units in the financial organization; and 𝜉
( j)
k

is the loss of the jth unit in the kth event. The
problem is how to find distribution of the aggregated losses

Lt =
J∑

j=1

L( j)
t , t > 0,

and compute the risk measures of the loss process for the purpose of capital allocation.
Denote the arrival moments of the operational events in the jth unit by T ( j)

k
, (k = 1, 2,…).

Then the number of operational events is

N( j)
t =

∞∑
k=1

𝟙(T ( j)
k

≤ t),

where 𝟙(⋅) is the indicator function.
There are two standard models for the processes N( j)

t . The first is the classical Poisson model.
The second is the negative binomial (NB) model generalizing the classical Poisson model (see
Barndorff-Nielsen and Yeo, 1969). In this chapter, we do not discuss the technical details of
the NB model, leaving this topic for future publications.

9.2.4 Correlation of Operational Events

Statistical analysis of the operational events indicates the presence of both positive and negative
correlations in the multivariate arrival process (Bae, 2012).

In Duch et al., (2014), we considered a fragment of the estimated annual correlation matrix
of the operational events, originally studied in Bae, (2012). The estimated correlation matrix
Cpp = ‖𝜌ij‖, where 𝜌ij = corr(N(i)

T
,N( j)

T
) is the correlation coefficient of the coordinates of the

multivariate process, Nt, looks as follows:

Cpp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.14 0.29 0.32 0.15 0.16 0.03 0.05 −0.06
0.14 1.0 0.55 −0.12 0.49 0.52 −0.16 0.2 0.02
0.29 0.55 1.0 0.11 0.27 0.17 −0.31 0.05 0.08
0.32 −0.12 0.11 1.0 −0.12 0.23 0.19 −0.18 −0.11
0.15 0.49 0.27 −0.12 1.0 0.49 −0.17 0.44 −0.03
0.16 0.52 0.17 −0.23 0.49 1.0 −0.02 0.13 0.29
0.03 −0.16 −0.31 0.19 −0.17 −0.02 1.0 0.32 0.5
0.05 0.2 0.05 −0.18 0.44 0.13 0.32 1.0 0.16

−0.06 0.02 0.08 −0.11 −0.03 0.29 0.5 0.16 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
One can notice that there are some correlation coefficients that cannot be ignored for the sim-
ulation purposes. In particular, 𝜌32 = 0.55 and 𝜌73 = −0.31 represent the extreme correlations
in Cpp. Practitioners working in the operational risk area often ignore the correlation structure
of the process, Nt, for the sake of simulation simplicity. We believe that such a simplification
may result in inaccurate estimation of the operational losses.
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9.3 Common Shock Model and Randomization of Intensities

Two possible extensions of the multivariate model with independent components are
considered in this section. The first extension is the common shock model (CSM),
which has traditional applications in insurance as well as in the area of operational risk
modeling.

The second extension is randomization of intensities of the Poisson processes, leading to a
more general class of stochastic processes usually called the mixed Poisson processes.

9.3.1 Common Shock Model

Correlation of Poisson processes can be controlled by various operations applied to indepen-
dent processes. One of the most popular operations, often considered in actuarial applications,
is a superposition of random processes, the CSM (Lindskog and McNeil, 2001; Powojovsky
et al., 2002; Shevchenko, 2011). The idea of this model is described here in the bivariate case.
Consider three independent Poisson processes, 𝜈(1)t , 𝜈(2)t , and 𝜈

(3)
t , and denote their intensities

by 𝜆1, 𝜆2, and 𝜆3, respectively. Let us form two new processes using a standard superpo-
sition operation of the processes, N(1)

t = 𝜈
(1)
t

⨁
𝜈
(2)
t and N(2)

t = 𝜈
(2)
t

⨁
𝜈
(3)
t , defined as fol-

lows. If 𝜈(1)t =
∞∑

i=0
𝟙(t(1)

i
≤ t) and 𝜈

(2)
t =

∞∑
i=0

𝟙(t(2)
i

≤ t), then the superposition of the processes,

(𝜈(1)
⨁

𝜈
(2))t, is defined by

(
𝜈
(1)
⨁

𝜈
(2)
)

t
∶=

2∑
j=1

∞∑
i=0

𝟙(t( j)
i

≤ t).

Clearly, the processes N(1)
t and N(2)

t are dependent; their correlation coefficient,

𝜌(N(1)
t ,N(2)

t ) =
𝜆2√

(𝜆1 + 𝜆2)(𝜆2 + 𝜆3)
,

does not depend on time (see Lindskog and McNeil, 2001; Powojovsky et al., 2002) and is
always nonnegative.

If all the elements of the correlation matrix, Cpp, are positive, the CSM can be used for
approximation of the multivariate Poisson processes (Powojovsky et al., 2002). However, if
there are negative elements, the CSM has difficulties explaining these correlations and cannot
be used unless the estimated negative elements are small.

9.3.2 Randomization of Intensities

One promising approach to the analysis and simulation of the jump processes with negative
correlations is randomization of intensities. In this case, the resulting processes, usually called
mixed Poisson processes, will have a more general probabilistic structure and nonstationary
correlations.
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Proposition 9.1 (Rolski et al., 1999) The correlation coefficient of the mixed Poisson pro-
cesses is

𝜌(𝜈(1)t , 𝜈
(2)
t ) ∶=

𝔼[𝜈(1)t ⋅𝜈(2)t ] − 𝔼[𝜈(1)t ]𝔼[𝜈(2)t ]

𝜎(𝜈(1)t ) 𝜎(𝜈(2)t )

=
𝜌(𝜆1(X), 𝜆2(X))√

1 + 1
t
𝔼[𝜆1(X)]
𝜎

2(𝜆1(X))
⋅
√

1 + 1
t
𝔼[𝜆2(X)]
𝜎

2(𝜆2(X))

, (9.2)

Randomization, clearly, increases applicability of the Poisson model. The only drawback of
the model is that convergence to the limit value of the correlation coefficient may be very slow.

9.4 Simulation of Poisson Processes

Let us now discuss two approaches to simulation of the Poisson processes. The first method
is the forward simulation of the arrival moments. It is, probably, the most natural simulation
method for independent Poisson processes. The second method, discussed in this section, is
the BS method described in the univariate case in Fox (1996) and in the multivariate case in
Duch et al., (2014).

9.4.1 Forward Simulation

Let Nt = (N(1)
t ,… ,N( j)

t ), t ≥ 0, be a J-dimensional Poisson process with independent compo-
nents. Denote by 𝜆j the parameter of the jth coordinate of the process, (j = 1, 2,… , J). Then,

𝔼[N( j)
t ] = 𝜆jt.

It is very well known that the interarrival times of the jth Poisson process, ΔTk
( j) ∶= T ( j)

k
−

T ( j)
k−1

, are mutually independent, for all k and j, and identically distributed, for each j random
variables with exponential distribution,

ℙ(ΔTk
( j)

≤ t) = 1 − exp(−𝜆jt), t ≥ 0, j = 1, 2,… , J.

Probably, the most natural method to generate arrival moments of the Poisson processes is the
recursive simulation

T ( j)
k

= T ( j)
k−1

+ ΔTk
( j)
, k ≥ 1, T ( j)

0
= 0. (9.3)

The number of events, N( j)
t , in the interval, [0, t], is a stochastic process with independent

increments such that

ℙ

(
J⋂

j=1

N( j)
t = kj

)
=

J∏
j=1

exp (−𝜆jt)⋅
(𝜆jt)kj

kj!
, j = 1, 2,… , J, kj ∈ ℤ+. (9.4)



�

� �

�

198 Financial Signal Processing and Machine Learning

If one is only interested in the number of events in the interval, [0, t], the random vector, Nt,
can be sampled directly from the joint distribution (9.4).

It is very well known that if the vectors of the interarrival times are independent, the process
Nt is Markovian in the natural filtration, 𝔉t = {𝜎(N

𝜏
)}

𝜏≤t, generated by the process Nt.

Denote by Pt(n1,… , nJ) = ℙ
(⋂J

j=1 {N( j)
t = nj}

)
the probabilities of the states of the

Markov process, Nt. Then,

𝜕

𝜕t
Pt(n1,… , nJ) = −ΛPt(n1,… , nJ) +

J∑
j=1

𝜆jPt(n1,… , nj − 1,… , nJ), (9.5)

where Λ =
J∑

j=1
𝜆j.

Until now, we considered the processes with independent coordinates. In the general case,
the following alternative, describing the correlation structure of the (multivariate) Poisson
process, can be found in Shreve (2004) and Revus and Yor (1991). The key role in this propo-
sition plays the natural filtration, 𝔉t, described in Revus and Yor (1991). Recall that in the
definition of the multivariate Poisson process given in Revus and Yor (1991) the increments
of the components of the process are conditionally independent conditional on the natural
filtration, 𝔉t.

Proposition 9.2 Let N(1)
t and N(2)

t be two Poisson processes measurable with respect to the
filtration 𝔉t. Then, either these processes are independent or they have simultaneous jumps.

Remark 9.1 If the processes N(1)
t and N(2)

t do not have simultaneous jumps, then the system
of equations (9.5) has a product-form solution

Pt(n1, n2) = P(1)
t (n1)⋅P

(2)
t (n2),

where

P( j)
t (nj) = exp (−𝜆jt)

(𝜆jt)nj

nj!
, j = 1, 2.

The latter is equivalent to independence of N(1)
t and N(2)

t . The probabilities P(i)
t (n) satisfy (9.5)

with J = 1. If the processes N(1)
t and N(2)

t have simultaneous jumps with positive intensity, then
the bivariate process has correlated coordinates.3

Remark 9.2 The statement of Proposition 9.2 can be generalized to arbitrary local martin-
gales and semi-martingales; see Revus and Yor (1991). Simulation of correlated processes
using joint distribution of the interarrival times is not very convenient: one has to find relations
between the correlations of the interarrival times and correlations of the number of events, N( j)

t .
One commonly used approach by practitioners is to exploit the CSM (Powojovsky et al., 2002).
Let us take M independent Poisson processes, 𝜂(1)t , 𝜂

(2)
t ,… , 𝜂

(M)
t , and form the processes N( j)

t
obtained by superposition of the subset of the processes 𝜂(m)

t .

3 The latter situation is regarded as the CSM.
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More precisely, let T ( j)
l

be a sequence of the arrival times of the jth process, 𝜂( j)
t :

𝜂
( j)
t =

∞∑
l=1

𝟙(T ( j)
l

≤ t), j = 1, 2,… ,M.

Denote

𝛿jk =
{

1, if kth process𝜂(k)t contributes to the superposition
0, otherwise,

Then the jth process,

N( j)
t =

M⨁
k=1

𝛿jk𝜂
(k)
t ,

is

N( j)
t ∶=

M∑
k=1

𝛿jk

∞∑
l=1

𝟙(T (k)
l

≤ t), j = 1, 2,… , J.

The intensity, 𝜆j, of the process N( j)
t satisfies

𝜆j =
M∑

k=1

𝜆
∗
k𝛿jk, (9.6)

where 𝜆
∗
k is intensity of 𝜂(k)t .

The elements of the correlation matrix are

𝜌ij =
𝜆

c
ij√

𝜆i 𝜆j

, (9.7)

where

𝜆
c
ij =

M∑
k=1

𝜆
∗
k𝛿ik𝛿jk.

The calibration problem for the CSM can be formulated as follows. Find M, the matrix
of contributions, 𝛿 = ‖𝛿jk‖, ( j, k = 1, 2,… ,M), and a vector of intensities (𝜆∗1,… , 𝜆

∗
M) such

that Equations (9.6) and (9.7) are satisfied, where 𝜆1, …, 𝜆J are estimated intensities of the
multivariate process and 𝜌ij are estimated correlation coefficients.

Proposition 9.3 The correlation coefficients, 𝜌ij, satisfy the inequality

0 ≤ 𝜌ij ≤ min
⎛⎜⎜⎝
√

𝜆i

𝜆j
,

√
𝜆j

𝜆i

⎞⎟⎟⎠ (9.8)

Proof. It immediately follows from (9.7) that the correlation coefficients must be nonnegative
and must satisfy the inequality 𝜆

c
ij ≤ min(𝜆i, 𝜆j), implying the upper bound for the elements of

the correlation matrix.

Proposition 9.3 demonstrates that the CSM is too restrictive and may lead to large errors if
parameters of the model do not satisfy (9.8).
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9.4.2 Backward Simulation

It is well known that the conditional distribution of the arrival moments of a Poisson process
in an interval, [0, T], conditional on the number of events in this interval4 is uniform (Cont
and Tankov, 2003). More precisely, let T = {T1, T2,… ,Tn} be a sequence of n independent
random variables with a uniform distribution in the interval, [0, T].

Denote by 𝜏k the kth-order statistic of T , (k = 1, 2,… , n):

𝜏1 = min
1≤k≤n

Tk, 𝜏2 = min
1≤k≤n

{Tk ∶ Tk > 𝜏1},… , 𝜏n = max
1≤k≤n

Tk.

Theorem 9.1 (Cont and Tankov, 2003; Rolski et al., 1999; Nawrotzki, 1962) The condi-
tional distribution of the arrival moments, T̃1 < T̃2 < · · · < T̃n, of a Poisson process, Nt, with
finite intensity coincides with the distribution of the order statistics:

ℙ(T̃k ≤ t | NT = n) = ℙ(𝜏k ≤ t), t ≤ T , k = 1, 2,… , n. (9.9)

The converse statement, formulated and proved here, is a foundation of the BS method for
Poisson processes. Consider a process, Nt, (0 ≤ t ≤ T) defined as

Nt =
N∗∑
i=1

𝟙(Ti ≤ t),

where N∗ is a random variable with a Poisson distribution; and the random variables, Ti,
are mutually independent and independent of N∗, identically distributed, with the uniform
distribution

ℙ(Ti ≤ t) = tT−1
, i = 1, 2,… , 0 ≤ t ≤ T .

Theorem 9.2 Let N∗ have a Poisson distribution with parameter 𝜆T. Then, Nt is a Poisson
process with intensity 𝜆 in the interval [0,T].

Proof. We give here a combinatorial proof of the statement exploiting the analytical properties
of the binomial distribution and binomial thinning. First of all, we notice that NT = N∗. Let us
prove that

1. For any interval, [s, s + t], of the length t, (s + t < T), ℙ(Ns+t − Ns = m) = e−𝜆t (𝜆t)m
m! ,

m = 0, 1, 2,….
2. For any m disjoint subintervals [ti, ti + 𝜏i] ∈ [0,T], (i = 1, 2,… ,m), the random variables

Nti+𝜏i
− Nti

are mutually independent, m = 2, 3,….

Denote ΔNs(t) ∶= Ns+t − Ns. By definition of Nt, we have NT = N∗ and

ℙ(ΔNs(t) = k) =
∞∑

m=0

ℙ(ΔNs(t) = k | N∗ = k + m)⋅ℙ(N∗ = k + m). (9.10)

4 The arrival moments here are not sorted (in ascending order).
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Notice that ΔNs(t) is the number of events that have occurred in the interval [s, s + t]. The
conditional distribution of the random variable ΔNs(t) is binomial

ℙ(ΔNs(t) = k | N∗ = k + m) =
(

k + m
k

)( t
T

)k
⋅
(

1 −
t
T

)m
, m = 0, 1,…

and the probability generating function p̂(z) ∶= 𝔼[zNT ] is5 p̂(z) = exp (𝜆T(z − 1)). The proof
of the first statement of Theorem 9.2 is based on the following.

Lemma 9.1 Let {pk}∞k=0 be a probability distribution. Denote its generating function by p̂(z):

p̂(z) =
∞∑

k=0

pkzk
, |z| ≤ 1.

Consider a sequence

qk =
∞∑

m=0

pk+m

(
k + m

k

)
xk(1 − x)m, 0 ≤ x ≤ 1, k = 0, 1,… . (9.11)

The sequence {qk}k≥0 is a probability distribution with the generating function, q̂(z),

q̂(z) = p̂(1 − x + xz). (9.12)

Applying Lemma 9.1, with pk+m = ℙ(ΔNs(t) = k | N∗ = k + m) and satisfying equation
(9.10) and x = t⋅T−1, we obtain that the generating function, g(z) ∶= 𝔼[zΔNs(t)] =
exp (𝜆t(z − 1)). Therefore, the increments of the process have a Poisson distribution,
ΔNs(t) ∼ Pois(𝜆t), and this distribution does not depend on s.

To prove the second statement of the theorem, we need the following generalization of
Lemma 9.1. Consider a vector x⃗ = (x1, x2,… , xm), satisfying the conditions

xj ≥ 0, j = 1, 2,… ,m,

m∑
j=1

xj < 1,

and denote

y = 1 −
m∑

j=1

xj.

Denote 𝜈i ∶= Nti+𝜏i
− Nti

, i = 1, 2,… ,m. For an m-dimensional vector, k⃗ = (k1, k2,… , km)
∈ ℤm

+ , with nonnegative integer coordinates, (kj ≥ 0), we define the norm of the vector

‖k⃗‖ ∶= m∑
j=1

kj.

For any m-dimensional vector, x⃗ = (x1, x2,… , xm), with nonnegative coordinates, (xj ≥ 0), and

k⃗ ∈ ℤm
+ , we denote

x⃗ k⃗ ∶=
m∏

j=1

xj
kj .

5 For the sake of brevity, we will call p̂(z) just generating function, in what follows.
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We also introduce a combinatorial coefficient(
k⃗ + l

k⃗

)
∶=

m∏
j=1

(∑m
i=j ki + l

kj

)
. (9.13)

It is not difficult to see that this coefficient can be written in a more symmetric form as a
multinomial coefficient (

k⃗ + l

k⃗

)
=
(∑m

i=1 ki + l
)

!

l!⋅
∏m

i=1 ki!
.

Lemma 9.2 Let {pk}∞k=0 be the probability distribution of a discrete random variable, 𝜉 and let

p̂(z) = 𝔼[z𝜉] be its generating function. Let k⃗ ∈ ℤm
+ and the combinatorial coefficient,

(
k⃗+l
k⃗

)
,

be defined by (9.13). Let 𝜋 ∶ ℤm
+ → ℝ be defined by

𝜋(k⃗) =
∞∑

l=0

p‖k⃗‖+l

(
k⃗ + l

k⃗

)
⋅x⃗ k⃗⋅yl, (9.14)

and denote by �̂�( z⃗ ) the generating function

�̂�( z⃗ ) ∶=
∑

k⃗∈ℤm
+

𝜋( k⃗ )z⃗ k⃗.

Then

�̂�( z⃗ ) = p̂

(
1 −

m∑
j=1

xj(1 − zj)

)
. (9.15)

Lemma 9.2 is proved in the Appendix. Let us now finish the proof of the second statement.
Denote pj =

𝜏j
T , ( j = 1, 2,… ,m), p⃗ = (p1,… , pm), and q = 1 −

∑m
j=1 pj. Then we have

ℙ

(
𝜈1 = k1,… , 𝜈m = km | XT =

m∑
j=1

kj + l

)
=

(
k⃗ + l

k⃗

)
⋅p⃗ k⃗⋅ql.

Therefore,

ℙ(𝜈1 = k1,… , 𝜈m = km) =
∞∑

l=0

(
k⃗ + l

k⃗

)
⋅p⃗ k⃗⋅ql⋅e−𝜆T (𝜆T)‖k⃗‖+l

(‖k⃗‖ + l)!
. (9.16)

Consider the generating function

𝜋(z⃗) ∶= 𝔼

[
m∏

j=1

z
𝜈j

j

]
, |zj| ≤ 1, j = 1, 2,… ,m.

Applying Lemma 9.2 with p̂(z) ∶= 𝔼[zXT ] = e𝜆T(z−1), xj = pj and y = q, we derive

𝜋( z⃗ ) =
m∏

j=1

e𝜆𝜏j(zj−1).
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The latter relation implies independence of the random variables 𝜈j, ( j = 1, 2,… ,m). There-
fore, the process Nt, (0 < t ≤ T) has independent increments. Theorem 9.2 is thus proved.

Remark 9.3 The conditional uniformity of the (unsorted) arrival moments is a characteristic
property of the more general class of mixed Poisson processes (Nawrotzki, 1962; Rolski et al.,
1999).

Now we are in a position to formulate the BS method in the of case of J = 1.

Step 1. Generate a random number, n, having the Poisson distribution with parameter 𝜆T:
n ∼ Pois(𝜆T), and assign NT ∶= n.

Step 2. Generate n uniformly distributed random variables in the interval [0, T],
Ti ∼ U([0,T]), i = 1, 2,… , n.

Step 3. Sort the random variables, Ti, in the ascending order.
Step 4. Repeat Steps 1–3 nmc times, where nmc is the required number of scenarios.

Remark 9.4 The BS method is applicable to the class of mixed Poisson processes with
random intensity. It can also be used for simulation of jump processes represented as a
time-transformed Poisson process (Feigin, 1979).

Remark 9.5 The BS of the Poisson processes can be implemented using quasi–Monte Carlo
(QMC) algorithms (see Fox, 1996; Fox and Glynn, 1988). In Fox (1996), in Step 1, the stratified
sampling was proposed for generation of the number of arrivals, NT , and QMC for generation
of arrival times. This numerical strategy significantly increases the rate of convergence.

9.4.2.1 Backward Simulation: J > 1

It is easy to extend the BS algorithm to the multivariate Poisson processes. Suppose that
marginal distributions of the random vector N∗ = (N(1)

∗ ,N(2)
∗ ,… ,N( j)

∗ ) are Poisson, N( j)
∗ ∼

Pois(𝜆jT). Denote the correlation coefficient of N(i)
∗ and N( j)

∗ by 𝜌ij.

Theorem 9.3 Consider the processes

N( j)
t =

N( j)
∗∑

i=1

𝟙(T ( j)
i

≤ t), j = 1, 2,… , J,

where the random variables, T ( j)
i
, (i = 1, 2,… ,X( j)

∗ ), are mutually independent and uniformly

distributed in the interval [0,T]. Then, N( j)
t is a multivariate Poisson process in the interval

[0,T] and
corr(N(i)

t ,N( j)
t ) = 𝜌ijtT

−1
, 0 ≤ t ≤ T. (9.17)

Proof. We have already proved in Theorem 9.2 that N( j)
t is a Poisson process. Let us now

formulate the auxiliary result used in the derivation of (9.17).
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Consider a bivariate, integer-valued random vector, 𝜁 = (𝜁1, 𝜁2), 𝜁 ∈ ℤ2
+, and denote

p(k, l) = ℙ(𝜁1 = k, 𝜁2 = l), k, l = 0, 1, 2,… ,

its probability distribution. By p̂(z, 𝑤), we denote the generating function

p̂(z, 𝑤) ∶=
∞∑

k=0

∞∑
l=0

p(k, l)zk
𝑤

l
, |z| ≤ 1, |𝑤| ≤ 1.

Consider a random vector, 𝜉 = (𝜉1, 𝜉2), such that for all k = 0, 1, 2,… , k′, and l = 0, 1,… , l′

ℙ(𝜉1 = k, 𝜉2 = l | 𝜁1 = k′, 𝜁2 = l′) =
(

k′

k

)
xk(1 − x)k

′−k⋅
(

l′

l

)
yl(1 − y)l

′−l, (9.18)

where 0 < x ≤ 1, 0 < y ≤ 1. The components of the random vector 𝜉 are conditionally inde-
pendent. The joint probability, qk,l = ℙ(𝜉1 = k, 𝜉2 = l), can be written as

qk,l =
∞∑

m=0

∞∑
n=0

pk+m,l+n⋅
(

k + m
k

)
xk(1 − x)m⋅

(
l + n

l

)
yl(1 − y)n, k, l = 0, 1, 2,… . (9.19)

Lemma 9.3 Suppose that the variance and the first moment of the random variables, 𝜁i,
(i = 1, 2), are equal:6 𝔼[𝜁i] = 𝜎

2(𝜁i). The generating function q̂(z, 𝑤) ∶=
∑∞

k=0
∑∞

l=0 qk,lz
k
𝑤

l,
satisfies the relation

q̂(z, 𝑤) = p̂(1 − x + xz, 1 − y + y𝑤), |z| ≤ 1, |𝑤| ≤ 1. (9.20)

The correlation coefficient of the random variables 𝜉1 and 𝜉2 is

𝜌(𝜉1, 𝜉2) =
√

xy⋅𝜌(𝜁1, 𝜁2). (9.21)

Lemma 9.3 is proved in the Appendix.
Let us apply Lemma 9.3 with 𝜁 = (N(i)

∗ ,N( j)
∗ ) and 𝜉 = (N(i)

t ,N( j)
t ). The conditional prob-

abilities, ℙ((N(i)
t = k,N( j)

t = l) | (N(i)
T

= k′,N( j)
T

= l′)), satisfy (9.18) with x = y = t T−1 and

𝜌(𝜁1, 𝜁2) = corr(N(i)
t ,N( j)

t ). Then, Lemma 9.3 implies (9.17).
Theorem 9.4 states the Markovian structure of the process N⃗t. If J = 1, N⃗t is a Poisson

process and, obviously, is Markovian in the natural filtration. If J > 1, the Markovian nature
of the process is not obvious since it is constructed backward.

Theorem 9.4 The process N⃗t = (N(1)
t ,N(2)

t ,… ,N( j)
t ) is a Markov process in the interval [0, T].

Proof. Let 0 = t0 < t1 < t2 < · · · < tm−1 < tm < T be a partition of the interval [0,T]. Con-
sider integer vectors, n⃗j ∈ ℤm

+ , n⃗j = (n( j)
1
, n( j)

2
,… , n( j)

m−1
, n( j)

m ), ( j = 1, 2,… , J), and denote

P
(
n⃗1, n⃗2,… , n⃗m

)
= ℙ

(
m⋂

k=1

J⋂
j=1

{N( j)
tk

= n( j)
k
}

)
.

6 As in the case of the Poisson distributions.
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By construction, the coordinates of N⃗t are conditionally independent, and the arrival moments
have conditional uniform distributions. Therefore,

ℙ

(
m⋂

k=1

J⋂
j=1

{
N( j)

tk
= n( j)

k

}|||| N⃗T = k⃗

)
=

J∏
j=1

ℙ

(
m⋂

k=1

{
N( j)

tk
= n( j)

k

}|||| N( j)
T

= kj

)
(9.22)

=
J∏

j=1

⎛⎜⎜⎜⎝
kj !

(kj − n(j)m )!⋅
∏m

k=1

(
Δn(j)

k

)
!
⋅

m+1∏
k=1

(
𝜏k

T

)Δn(j)
k

⎞⎟⎟⎟⎠ ,
where Δn( j)

k
= n( j)

k
− n( j)

k−1
, 𝜏k = tk − tk−1, 𝜏m+1 = T − tm and n( j)

0
= 0.

Consider the conditional probabilities

P
(
n⃗m | n⃗m−1,… , n⃗1

)
∶= ℙ

(
J⋂

j=1

{
N( j)

tm
= n( j)

m

}||||
J⋂

j=1

m−1⋂
k=1

{
N( j)

tk
= n( j)

k

})
.

We have

P(n⃗m | n⃗m−1,… , n⃗1) =
P(n⃗1, n⃗2,… , n⃗m)

P(n⃗1, n⃗2,… , n⃗m−1)
(9.23)

=
P(n⃗m−2,… , n⃗1 | n⃗m, n⃗m−1)P(n⃗m, n⃗m−1)

P(n⃗1, n⃗2,… , n⃗m−1)
.

Equation (9.23) implies

P(n⃗m−2,… , n⃗1 | n⃗m, n⃗m−1) = P(n⃗m−2,… , n⃗1 | n⃗m−1). (9.24)

Notice that P(n⃗m, n⃗m−1) = P(n⃗m | n⃗m−1)P(n⃗m−1). Equations, (9.23) and (9.24) imply

P(n⃗m | n⃗m−1,… , n⃗1) = P(n⃗m | n⃗m−1),

as was to be proved.

9.4.2.2 Generation of Poisson Random Vectors

Using the BS method, we reduce simulation of the multivariate Poisson processes to gener-
ation of the random integer-valued vector with marginal Poisson distribution. The following
approach to generation of the Poisson random vectors, based on the idea of transformation
of Gaussian random vectors with properly assigned correlations, is considered in Yahav and
Shmueli (2011) and Duch et al. (2014).

Let us recall one simple, general property of random variables: if 𝜉 is a continuous ran-
dom variable with the cumulative distribution function (cdf), F(x), then the random variable,
𝜁 = F(𝜉), has the standard uniform distribution, U([0, 1]), in the unit interval.

Conversely, given a distribution function, F, and a sample from the uniform distribution, 𝜁1,
𝜁2, …, 𝜁M , we obtain a new sample, 𝜉m = F(−1)(𝜁m), (m = 1, 2,… ,M), from the distribution F
(see Johnson and Kotz, 1969; Johnson et al., 1997).
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Consider a random vector, 𝜂 = (𝜂1,… 𝜂J), with a mean-zero multivariate normal dis-
tribution, N (0, 𝜌), with the correlation matrix, 𝜌, and unit variances. The random vector,
𝜉 = (Φ(𝜂1),… ,Φ(𝜂m)), where Φ(x) is the standard normal cdf, has a multivariate distribution
with the standard uniform marginals. Let [x] be the integer part of x, (x ∈ ℝ). Denote

P
𝜆
(x) ∶=

⎧⎪⎨⎪⎩
[x]∑

k=0
e−𝜆 𝜆

k

k! , if x ≥ 0,

0, otherwise,

the cdf of the Poisson random variable. Applying the inverse Poisson cdf to each coordinate
of 𝜉, we obtain a random vector 𝜁 = (𝜁1,… , 𝜁J), where 𝜁j = P−1

𝜆j
(Φ(𝜂j)) has Poisson marginal

distribution with parameter 𝜆j. The correlation coefficient, �̂�k,l ∶= corr(𝜁k, 𝜁l), is

�̂�k,l =
𝔼[𝜁k⋅𝜁l] − 𝜆k𝜆l√

𝜆k⋅𝜆l

, k, l = 1, 2,… , J,

and
𝔼[𝜁k⋅𝜁l] = 𝜆k𝜆l + �̂�k,l⋅

√
𝜆k⋅𝜆l. (9.25)

9.4.2.3 Model Calibration

Let us now briefly discuss the calibration problem. In Duch et al. (2014), the calibration
problem was set as a matching of the intensities, 𝜆j, and the correlation coefficients, �̂�ij. The
intensities, 𝜆j, can be found from the observations of the number of events in the interval,
[0,T]. In Duch et al. (2014), it is shown that

𝔼[𝜁k⋅𝜁l] =
∞∑

m=1

∞∑
n=1

n⋅mℙ(𝜁k = m, 𝜁l = n) (9.26)

=
∞∑

m=1

∞∑
n=1

n⋅mℙ(u(k−1)
m < Φ(𝜂k) ≤ u(k)m , u(l−1)

n < Φ(𝜂l) ≤ u(l)n ),

where u(i)
j

= P−1
𝜆i
( j), (i = 1, 2,… , J, j = 1, 2,… ).

The probabilities, ℙ(u(k−1)
m < Φ(𝜂k) ≤ u(k)m , u(l−1)

n < Φ(𝜂l) ≤ u(l)n ), can be written as a lin-
ear combination of the bivariate normal distribution functions, Φ2(⋅, ⋅, 𝜌), with the arguments
depending on the indices m and n. Then, from (9.25) and (9.26), we obtain an implicit equation
for the correlation coefficient, �̂�k,l.

A numerical scheme for the computation of the matrix �̂� = ‖�̂�k,l‖ is considered in detail
in Duch et al. (2014). There is, however, one delicate problem related to the existence of the
correlation matrix 𝝆. The problem is the sufficient conditions, for a given positive semidefinite
matrix to be a correlation matrix of a random vector with the Poisson marginal distributions,
depend on the parameters, 𝜆j, of these distributions. The latter property is in contrast with
Gaussian random vectors. Thus, the admissibility test is required to verify if the calibration
problem has a solution. It is shown in Duch et al. (2014) that the calibration problem for
multivariate processes is decomposed into a series of bivariate problems for each correlation
coefficient. This problem is analyzed in Section 9.5.
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9.5 Extreme Joint Distribution

We would like to find the range, [𝜌∗, 𝜌∗∗], of the admissible values of the correlation coefficient,
given the intensities, 𝜆 and 𝜇, of the random variables, N and N ′, with Poisson marginal
distributions. A straightforward observation is that this range is asymmetrical. Indeed, it is not
difficult to see that the maximal correlation can be 1 in the case of equal intensities. On the
other hand, it is impossible to obtain 𝜌 = −1, simply because both N and N ′ are nonnegative,
unbounded random variables and a linear relation, N = −bN ′ + c with a constant b > 0 and
an arbitrary finite c, contradicts the nonnegativity of the random variables.

9.5.1 Reduction to Optimization Problem

Denote the marginal probabilities of the vector (N ,N ′) by p(i) ∶= ℙ(N = i) and q( j) ∶=
ℙ(N ′ = j), (i, j = 0, 1, 2,… ). The results of this subsection are derived in a general case and
do not use the Poisson specification of the marginal probabilities.

Let us find the joint distributions of the random vector, (N ,N ′), such that the correlation
coefficient 𝜌 = 𝜌(N,N ′) takes an extreme value, 𝜌 → extr, and

ℙ(N = i) = p(i), i = 0, 1, 2,… ,

ℙ(N ′ = j) = q( j), j = 0, 1, 2,… , (9.27)

where
∞∑

i=0
p(i) =

∞∑
j=0

q( j) = 1.

This problem was considered in Embrechts and Puccetti (2006), Griffiths et al. (1979), and
Nelsen (1987). The coefficients 𝜌∗ = min𝜌(N,N ′) and 𝜌

∗∗ = max𝜌(N,N ′) were numerically
calculated in Griffiths et al. (1979) using reduction to the optimization problem discussed
below. In that chapter, it was shown that both 𝜌

∗ and 𝜌
∗∗ are nonmonotone functions of the

intensities, 𝜆 and𝜇. It was proved in Griffiths et al. (1979), using the nonmonotonicity property,
that the distribution of the vector (N ,N ′) is not infinitely divisible.

Denote by 𝔭 the matrix of the joint probabilities

𝔭i,j = ℙ(N = i,N ′ = j), i = 0, 1, 2,… , j = 0, 1,… .

Let

f (𝔭) ∶=
∞∑

i=0

∞∑
j=0

ij𝔭i,j.

Then the solution to the problem

f (𝔭)→ extr (9.28)
∞∑

j=0

𝔭i,j = p(i), i = 0, 1,…

∞∑
i=0

𝔭i,j = q( j), j = 0, 1,…
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∞∑
i=0

∞∑
j=0

𝔭i,j = 1

𝔭i,j ≥ 0 i, j = 0, 1,…

is the joint distribution maximizing (or minimizing) the correlation coefficient given marginal
distributions of N and N ′. Note that the problem (9.28) belongs to the class of infinitely
dimensional linear programming problems.7

9.5.2 Monotone Distributions

In this section, we describe the structure of the extreme joint distributions and derive formulae
for the joint probabilities, 𝔭∗i,j and 𝔭∗∗i,j (see Theorem 9.5). We introduce two special classes
of discrete, bivariate distributions that, according to Frechet (1951), we call co-monotone and
anti-monotone distributions, and prove that, given marginal distributions, the solution to the
extreme problem (9.28) belongs to these classes. We also demonstrate that in the case of
discrete bivariate distributions, Theorem 9.5 is equivalent to the famous Frechet–Hoeffding
theorem on extreme distributions, obtained in Hoeffding (1940).

Consider a set of points, (finite or infinite), S = {sn}n≥1, where sn = (xn, yn) ∈ ℝ2. Consider
the subsets R+ = {(x, y) ∈ ℝ2 ∶ x⋅y ≥ 0} and R− = {(x, y) ∈ ℝ2 ∶ x⋅y ≤ 0}.

Definition 9.1 A set S = {sn}n≥1 ∈ ℝ2 is called co-monotone if ∀i, j the vector si − sj ∈ R+.
A set S ∈ ℝ2 is called anti-monotone if ∀i, j si − sj ∈ R−.

Figure 9.1 illustrates the notion of the co-monotone and anti-monotone sets introduced in Def-
inition 9.1. Let z ∈ ℝN and 𝜋 be a permutation of N elements. The group of permutations of
N elements is denoted by 𝔖N . Finally, we introduce the notation 𝜋z ∶= (z

𝜋(1), z𝜋(2),… z
𝜋(N)).

Suppose that S = {(xn, yn)}N
n=1 is a finite, co-monotone set in ℝ2, N ≥ 2. Consider the vec-

tors, x = (x1, x2,… , xN) and y = (y1, y2,… , yN). Then there exists a permutation, 𝜋, such that
both vectors 𝜋x and 𝜋y have monotonically increasing coordinates:

x
𝜋(1) ≤ x

𝜋(2) ≤ · · · ≤ x
𝜋(N) and y

𝜋(1) ≤ y
𝜋(2) ≤ · · · ≤ y

𝜋(N).

If S is an anti-monotone set, then there exists a permutation, 𝜏, such that 𝜏x has monotonically
increasing coordinates and coordinates of 𝜏y are monotonically decreasing.

Let us now introduce the co-monotonicity of two-dimensional random vectors. Consider a
random vector, (X,Y), where X and Y are discrete random variables. Denote by S ∶= {sn}∞n=1,
sn = (xn, yn), the support of its distribution. The probabilities, P(sn) = ℙ(X = xn,Y = yn),
satisfy

∞∑
n=1

P(sn) = 1 and P(sn) > 0 for all n, (n = 1, 2,… ).

Definition 9.2 We call the distribution, P, co-monotone if its support is a co-monotone set. A
discrete, bivariate distribution is called anti-monotone if its support is an anti-monotone set.

7 These problems are often numerically unstable.



�

� �

�

Correlated Poisson Processes and Their Applications in Financial Modeling 209

Let a random vector (X,Y) take values on the lattice ℤ(2)
+ = {(i, j) ∶ i ≥ 0, j ≥ 0}. Denote

𝔭i,j ∶= ℙ(X = i, Y = j), and introduce marginal cdf’s Pi ∶= ℙ(X ≤ i), and Qj ∶= ℙ(Y ≤ j),
(i, j = 0, 1, 2,… ).

Suppose that P = {p(n)}∞n=0 andQ = {q(n)}∞n=0, are discrete distributions onℤ+, and denote
by 𝔇(P,Q) the class of discrete bivariate distributions,

𝔇(P,Q) = {f (i, j) ∶
∑

j∈ℤ+

f (i, j) = p(i),
∑

i∈ℤ+

f (i, j) = q( j), i, j ∈ S},

with the marginal distributions, P and Q, having finite first and second moments. If
𝔭 ∈ 𝔇(P,Q) is a distribution of a random vector (X,Y), then 𝔼[XY] < ∞. Obviously the
Poisson distributions, P and Q, belong to 𝔇(P,Q).

The main result of this section is the following.

Theorem 9.5 The distribution, 𝔭∗∗, maximizing the correlation coefficient of X and Y, given
marginal distributions, is co-monotone. If a vector (i, j) belongs to the support of 𝔭∗∗, then the
probability, 𝔭∗∗i,j ∶= ℙ(X = i, Y = j), satisfies

𝔭∗∗i,j = min(Pi,Qj) − max(Pi−1,Qj−1), i, j = 0, 1, 2,… , (9.29)

𝔭∗∗0,0 = min(P0,Q0), (9.30)

where the probabilities P−1 = Q−1 = 0.
The distribution, 𝔭∗, minimizing the correlation coefficient of X and Y is anti-monotone. If

a vector (i, j) belongs to the support of 𝔭∗ then

𝔭∗i,j = min(Pi, Q̄j−1) − max(Pi−1, Q̄j), i, j = 0, 1, 2,… , (9.31)

where Q̄j = 1 − Qj for j = 0, 1, 2,… and Q̄−1 ∶= 1.
The extreme distributions, 𝔭∗ and 𝔭∗∗, are unique.

The rest of this subsection is dedicated to the proof of Theorem 9.5. At first, we recall one
important result on the monotone sequences of real numbers, that can be found in Hardy et al.
(1952). This result motivates introduction of the co-monotone or anti-monotone distributions.
After that, we prove that the extreme distributions must be co-monotone and find their support
and compute the joint probabilities. The reasoning described below is quite general and does
not depend on the specific type of the marginal distributions.

Let x1 ≤ x2 ≤ … ≤ xN be a monotone sequence of N real numbers, xk ∈ ℝ, (k =
1, 2,… ,N), and y1, y2, …, yN be an arbitrary sequence of real numbers, yk ∈ ℝ. Denote the
inner product of two vectors, x ∈ ℝN , and y ∈ ℝN , by

⟨x, y⟩ ∶= N∑
k=1

xkyk, x = (x1,… , xN), y = (y1,… , yN).

Lemma 9.4 (Hardy et al., 1952) For any monotonically increasing sequence, x1 ≤ x2 ≤

… ≤ xN, and a vector, y ∈ ℝN, there exist permutations, 𝜋+ and 𝜋−, solving the extreme prob-
lems ⟨x, 𝜋+y⟩ = max

𝜋∈𝔖N
⟨x, 𝜋y⟩,
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and ⟨x, 𝜋−y⟩ = min
𝜋∈𝔖N

⟨x, 𝜋y⟩.
The permutation, 𝜋+, sorts the vector y in ascending order; the permutation, 𝜋−, sorts the
vector y in descending order.

If x and y are co-monotone, then

⟨x, y⟩ = max
𝜋,𝜏∈𝔖N

⟨𝜋x, 𝜏y⟩. (9.32)

Indeed,
N∑

i=1

xiyi =
N∑

i=1

x
𝜋(i)y𝜋(i),∀𝜋 ∈ 𝔖N .

By the co-monotonicity assumption, there exists a permutation, 𝜋, such that both 𝜋x and 𝜋y
are monotonically increasing. Then, Lemma 9.4 implies (3.32).

From now on, we will consider only discrete random vectors, (X,Y), defined on ℤ2
+, the

positive quadrant of the two-dimensional lattice. The joint probabilities will be denoted by
𝔭i,j ∶= ℙ(X = i, Y = j), i, j = 0, 1,… in what follows.

Consider two monotone sequences, {xn}∞n=1 and {yn}∞n=1, both containing the set of all non-
negative, integer numbers satisfying the inequalities |xn+1 − xn| ≤ 1, |yn+1 − yn| ≤ 1 . Obvi-
ously, these sequences are co-monotone. Take the set Z ∈ ℤ2

+, Z = {(xn, yn)}N
n=1, for some

fixed N. Let us connect the nodes (xn, yn) and (xn+1, yn+1) by the arrows, (n = 1, 2,...,N − 1).
Then we obtain a directed path in ℤ2

+ (see Figure 9.1a). This path can be viewed as a graph of
a monotonically increasing, multivalued function taking integer values.

In the case of the anti-monotone sequences, the path looks similar to that displayed in
Figure 9.1b; it can be viewed as a graph of a monotonically decreasing, multivalued function
taking integer values. To emphasize that the introduced path contains support of the distribu-
tion, we shall call it the support path, or, for the sake of brevity, the S-path.

Lemma 9.5 Suppose that a distribution 𝔭 solves the problem (9.28), f (𝔭) → max. Then 𝔭 is
co-monotone.

Proof. Let (i, j) belong to the support of 𝔭. We shall prove that 𝔭i+1,j⋅𝔭i,j+1 = 0. Indeed, the
probabilities, 𝔭i,j, satisfy the constraints

𝔭i,j + 𝔭i,j+1 = P̂i, (9.33)

𝔭i+1,j + 𝔭i+1,j+1 = P̂i+1, (9.34)

where P̂i =
∑

k≠j,j+1
𝔭i,k and P̂i+1 =

∑
k≠j,j+1

𝔭i+1,k. On the other hand,

𝔭i,j + 𝔭i+1,j = Q̂j, (9.35)

𝔭i,j+1 + 𝔭i+1,j+1 = Q̂j+1, (9.36)

where Q̂j =
∑

l≠i,i+1
𝔭l,j and Q̂j+1 =

∑
l≠i,i+1

𝔭l,j+1. Obviously,

P̂i + P̂i+1 = Q̂j + Q̂j+1. (9.37)
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0
(a) Co-monotone case.

0
(b) Anti-monotone case.

+

(2)
+

(2)

Figure 9.1 Typical monotone paths.

The function f (𝔭) can be written as

f (𝔭) =
∑
𝛼

kl𝔭k,l +
∑
𝛽

kl𝔭k,l,

where the set of indices, 𝛼, contains only four indices 𝛼 = {(i, j), (i, j + 1), (i + 1, j), (i + 1,
j + 1)}; and 𝛽 is the complementary set, 𝛽 = ℤ2

+\𝛼.
Denote t = 𝔭i+1,j+1, t ≥ 0. Equations (9.33–9.37) imply

𝔭i+1,j = P̂i+1 − t,

𝔭i,j = Q̂j − P̂i+1 + t, and

𝔭i,j+1 = P̂i − Q̂j + P̂i+1 − t.

We have max(0, P̂i+1 − Q̂j) ≤ t ≤ min(P̂i+1, Q̂j+1). The objective function can be written as

f (𝔭) =
∑

(k,l)∈𝛽
kl𝔭k,l + ij⋅(P̂i + P̂i+1) + j⋅P̂i+1 + iQ̂j+1 + t.

The solution to the problem, f (𝔭) → max, is attained at the boundary, t = tmax. In our case,
tmax = min(P̂i+1, Q̂j+1). If tmax = P̂i+1, then 𝔭i+1,j = 0. If tmax = Q̂j+1, then from (9.37) we
obtain 𝔭i,j+1 = 0. If P̂i+1 = Q̂j+1), then 𝔭i+1,j = 𝔭i,j+1 = 0.

A similar statement can be proved for the minimization problem.

Lemma 9.6 Let 𝔭 be a solution to problem (9.28), f (𝔭) → min. Then 𝔭 is anti-monotone.

Monotonicity of the distributions is directly related to monotonicity of the samples of random
variables from these distributions.
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Lemma 9.7 Consider a finite random sample, Z = {Zn}N
n=1, of independent, two-dimensional

vectors Zn = (Xn,Yn)′ from a co-monotone distribution. Then, Z is co-monotone.
If a random sample of N independent two-dimensional vectors, Z, has co-monotone coor-

dinates for any integer N ≥ 2, then Z is a sample from a co-monotone distribution.

Proof. Consider an independent, finite sample, Z, from a co-monotone distribution. Let us
find a permutation, 𝜋, ordering the first coordinate, {Xn}N

n=1, and apply this permutation to the
second coordinate. Then we obtain

X̂1 ≤ X̂2 ≤ · · · ≤ X̂N , where X̂ = 𝜋X.

If the second coordinate, Ŷ = 𝜋Y , is also ordered, the proof is finished. Suppose, on the con-
trary, there is a couple of indices, i < j, such that Ŷi > Ŷj; then the first coordinate must satisfy
the relation X̂i = X̂j, otherwise the co-monotonicity condition of the support is not satisfied.
Then the transposition of the elements, Ŷi and Ŷj, puts these elements in ascending order. After
a finite number of transpositions, we find a permutation, 𝜏, ordering the second coordinate and
keeping the first coordinate without changes. Then the permutation, 𝜏⋅𝜋, makes Z monotone
coordinate-wise.

To prove the converse statement, let us assume that support of the bivariate distribution is
not co-monotone. Then there exist two elements of the support, sk = (xk, yk) and sl = (xl, yl),
such that xk ≤ xl but yk > yl. Since both elements of the support have positive probabilities,
there exists sufficiently large N such that the sample of independent vectors contains both
vectors, sk and sl. Then Z is not co-monotone.

Lemma 9.8 is a direct analog of Lemma 9.7 for the anti-monotone distributions.

Lemma 9.8 Consider a finite random sample, Z = (Z1,… ,ZN), of independent,
two-dimensional vectors Zn = (Xn,Yn)′ from an anti-monotone distribution. Then, the
set {Zn}N

n=1 is anti-monotone. If a random sample of N independent two-dimensional
vectors, Z, has anti-monotone coordinates for any integer N ≥ 2, then Z is a sample from an
anti-monotone distribution.

Let us now find the joint probabilities and compute the support of the extreme distributions.
We will use a probabilistic argument based on the Strong Law of Large Numbers (SLLN)
(Johnson et al., 1997). Let us start with the distribution 𝔭∗∗, maximizing the correlation coef-
ficient. Consider a sample, {(X̃n, Ỹn)}N

n=1, of the size, N, from the distribution 𝔭∗∗. There exists
a permutation, 𝜋, such that the vectors X = 𝜋X̃ and Y = 𝜋X̃ both have monotone coordinates.
As N → ∞, we obtain two sequences of increasing length,

X ∶

NX (0)
⏞⏞⏞⏞⏞⏞⏞

0, 0,… , 0,

NX (1)
⏞⏞⏞⏞⏞⏞⏞

1, 1,… , 1,

NX (2)
⏞⏞⏞⏞⏞⏞⏞

2, 2,… , 2,… ,

NX (k)
⏞⏞⏞⏞⏞⏞⏞

k, k,… , k,…

Y ∶ 0,… , 0
⏟⏟⏟

NY (0)

, 1,… , 1
⏟⏟⏟

NY (1)

, 2,… , 2
⏟⏟⏟

NY (2)

,… , k, k, k,… , k, k
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

NY (k)

,… , (9.38)
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with the number of elements, NX(k) and NY (k), in the sequences satisfying, by the SLLN, the
relations:

lim
N→∞

NX(k)
N

= pk, k = 0, 1, 2,… , almost surely, (9.39)

lim
N→∞

NY (k)
N

= qk, k = 0, 1, 2,… , almost surely.

The probabilities, Pi = ℙ(Xk ≤ i) and Qj = ℙ(Yk ≤ j), satisfy

Pi =
i∑

l=0

pl, Qj =
j∑

l=0

ql, i, j = 0, 1, 2,… .

Let us denote the number of pairs, (i, j), by Nij. In particular, the number of pairs, (0, 0), is

N00 = min(NX(0),NY (0)). (9.40)

Lemma 9.9 The limits,

𝔭∗∗ij = lim
N→∞

Nij

N

exist almost surely for all i, j = 0, 1, 2,…, as N → ∞. They satisfy equation (9.29).

Proof. In the case of the state (0, 0), existence of the limit, 𝔭∗∗0,0, follows from the continuity
of the function min, equation (9.40), and existence of the limits in (9.39). Let us prove the
statement of the lemma for i > 0 and j > 0. Consider the sequence of vectors, (Xk,Yk), (k =
1, 2,… ). It is not difficult to see that Nij satisfies the relation

Nij = [min(MX(i),MY ( j)) − max(MX(i − 1),MY ( j − 1))]+, (9.41)

where

MX(i) =
i∑

l=0

NX(l) and MY (i) =
i∑

l=0

NY (l),

and, as usual, x+ ∶= max(0, x). Indeed, the index, k, of the pair, (i, j), in the sequence satisfies
the inequalities k ≥ max(MX(i − 1),MY ( j − 1)) and k ≤ min(MX(i),MY ( j)). Equation (9.41)
follows from these inequalities.

Passing to the limit as N → ∞, we obtain that almost surely

lim
N→∞

MX(i)
N

= Pi, and lim
N→∞

MY (i)
N

= Qi, i = 0, 1,… .

Existence of the limits, 𝔭∗∗ij , now follows from (9.41) and continuity of the functions min(⋅, ⋅)
and max(⋅, ⋅). From (9.41), we find that the probability, 𝔭i,j, of the state (i, j) satisfies:8

𝔭∗∗i,j = min(Pi,Qj) − max(Pi−1,Qj−1).

Equation (9.29) is thus proved.

8 If min(Pi,Qj) ≤ max(Pi−1,Qj−1), then the vector (i, j) does not belong to the support.
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In the case of minimal correlation, for any sample, {(X̃n, Ỹn)}N
n=1, there exists a permutation,

𝜋, sorting the first coordinate in ascending order and the second coordinate in descending order:

X1 ≤ X2 ≤ … ≤ XN , where X = 𝜋X̃,

and the second coordinate forms a decreasing sequence:

Y1 ≥ Y2 ≥ … ≥ YN , where Y = 𝜋X̃.

As N → ∞, we obtain two sequences,

X ∶

NX (0)
⏞⏞⏞

0,… , 0,…

NX (i−1)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

i − 1,… , i − 1,

NX (i)
⏞⏞⏞

i, i,… , i,… ,

NX (k)
⏞⏞⏞⏞⏞⏞⏞

k, k,… , k,…

Y ∶ … , j + 1, j + 1… , j + 1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

NY ( j+1)

, j,… , j
⏟⏟⏟

NY ( j)

, j − 1,… , j − 1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

NY ( j−1)

,… , 0,… , 0, 0
⏟⏞⏞⏟⏞⏞⏟

NY (0)

(9.42)

with the number of elements, NX(k) and NY (k), satisfying, by the SLLN, equation (9.39) almost
surely.

Lemma 9.10 The limits 𝔭∗i,j = lim
N→∞

Ni,j
N exist almost surely for all i, j = 0, 1, 2,…, as N → ∞,

and satisfy equation (9.31).

Proof. The proof is a minor modification of that of Lemma 9.9. Let for some k, Xk = i and
Yk = j. Notice that k ≥ N − MY ( j) (see (9.42)). Then we have

Ni,j = min(MX(i),N − MY ( j − 1)) − max(MX(i − 1),N − MY ( j)), (9.43)

Passing to the limit in (9.43), as N → ∞, we derive (9.31).

Proof of Lemma 9.10 completes the derivation of Equations (9.29)–(9.31). Uniqueness of the
extreme distributions, 𝔭∗ and 𝔭∗∗, follows immediately from (9.29)–(9.31). Theorem 9.5 is
thus proved.

9.5.3 Computation of the Joint Distribution

Equation (9.29), in principle, allows one to find all the elements of the support of the maximal
distribution and to compute the probabilities. In practice, this computation can be done much
more efficiently by the algorithm described in this section. The idea of the extreme joint distri-
bution (EJD) algorithm is to walk along the S-path, instead of considering all possible pairs,
(i, j), satisfying Equation (9.29).

It is useful to look again at the structure of the sample, represented by (9.38). When N is
fixed, we have segments of a random length containing NX(k) elements equal to k. As N → ∞
the length of the segment, the random variables, NX(i) and NY ( j), also tend to infinity, but the
ratios (9.39) converge to finite limits.

In the limit, the scaled diagram (9.38) will look like two partitions of the unit interval, [0, 1]
with the nodes, ΠX = {P0,P1,…} and ΠY = {Q0,Q1,…}, defined by the cdf’s.
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ΠX
0 P0 P1 P2 . . .

1

ΠY

0
1

Q0 Q1 Q2 Q3 Qk . . .

ΠX ∨ ΠY
0

1
z0 z2 z3 z4 z5 zk+2 zk+3z1 . . .

Figure 9.2 Partitions of the unit interval: corr(X,Y) → max.

The partition, ΠZ = ΠX ∨ ΠY , is formed by the union of the nodes of the partitions ΠX and
ΠY ; see Figure 9.2. We denote the nodes of the partition, ΠZ , by z0 ≤ z1 ≤ ….

It is convenient to assume that each node of ΠZ “remembers” the original partition it came
from (ΠX or ΠY ), its index in the original partition, and its cumulative probability. The initial
element of the support, {(xk, yk)}∞k=0, is (0, 0); the probability of this state is z0 = min(P0,Q0).
The algorithm scans the elements of the partition,ΠZ ; finds the support of the extreme, bivariate
distribution; and computes the joint probabilities, 𝔭i,j.

9.5.3.1 EJD Algorithm

We shall start with the case of maximal correlation.

Step 0. k ∶= 0; xk ∶= 0, yk ∶= 0; 𝔭0,0 = z0.
Step 1. k ∶= k + 1.
Step 2. If zk−1 = Pi for some i and zk−1 ≠ Qj for all j, then xk = i + 1 and yk = yk−1. If zk−1 =

Qj for some j and zk−1 ≠ Pi for all i, then xk = xk−1 and yk = j + 1. If there exist such
i and j that zk−1 = Pi = Qj, then xk = i + 1 and yk = j + 1.

Step 3. Assign the kth element of the support, (xk, yk).
Step 4. 𝔭∗∗xk ,yk

∶= zk − zk−1.
Step 5. Go to Step 1.

In the case of minimal correlation, we “flip” the distribution function and use the tail proba-
bilities, … , 1 − Qk, 1 − Qk−1,… , 1 − Q0, instead of Qk (see Figure 9.3).

Remark 9.6 One can think of the EJD algorithm as an observer moving along the S-path in
ℤ2

+; as such, the time to get to the kth node is zk. Each time the observer’s position is the kth
node, (xk, yk), of the support, she records the coordinates of the node into the list and marks
the node with the probability 𝔭∗∗xk ,yk

.

9.5.4 On the Frechet–Hoeffding Theorem

In the discrete case, the Frechet–Hoeffding theorem can be formulated as follows. Consider a
space 𝔇(P,Q) of discrete bivariate distributions, with the marginal distributions, P and Q.
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ΠX
0 P0 P1 P2 . . .

1

ΠY

1
0

Qn Qn–1 Qn–2 Q1 Q0

ΠX ∨ ΠY
0

1
zn zn+2 zn+3 zn+4 zn+5 zn+6zn+1 zn+7. . .

Figure 9.3 Partitions of the unit interval: corr(X,Y) → min.

Theorem 9.6 (Frechet, 1951; Hoeffding, 1940) The bivariate cdf, H∗(i, j) ∶= ℙ(X ≤ i, Y ≤

j), maximizing the correlation of X and Y is

H∗(i, j) = min(Pi,Qj), i, j ∈ ℤ2
+. (9.44)

The bivariate cdf, H∗(i, j), minimizing the correlation of X and Y is

H∗(i, j) = max(0,Pi + Qj − 1), i, j ∈ ℤ2
+. (9.45)

Proposition 9.4 Theorem 9.5 is equivalent to the Frechet–Hoeffding theorem.

Proof. We shall only prove that Theorem 9.5 implies the Frechet–Hoeffding theorem in the
case of maximimal correlation. It is enough to prove (9.44) in the case that the node, (i, j),
belongs to the S-path. We give the proof by induction on the index of the node.

Let us check the basis of induction. The first node is (0, 0). If i = j = 0, then ℙ(X ≤ 0,Y ≤

0) = ℙ(X = 0,Y = 0) = min(P0,Q0). Thus, equation (9.44) is satisfied.
Suppose that the statement is true for the kth node, (i, j): ℙ(X ≤ i, Y ≤ j) = min(Pi,Qj). Let

us prove the statement for the (k + 1)st node.
There are three possibilities: the (k + 1)st node is (i + 1, j), the (k + 1)st node is (i + 1, j + 1),

or the (k + 1)st node is (i, j + 1). In the first case, using Equation (9.29), we find

ℙ(X ≤ i + 1,Y ≤ j) = ℙ(X ≤ i, Y ≤ j) + 𝔭i+1,j

= min(Pi,Qj) + min(Pi+1,Qj) − max(Pi,Qj−1).

Since the S-path contains the arrow from the node (i, j) to (i + 1, j), we have Pi < Qj. On the
other hand, since the second coordinate of the node is j, Pi > Qj−1. Thus, max(Pi,Qj−1) = Pi.
Then we obtain that

min(Pi,Qj) = max(Pi,Qj−1) = Pi.

Therefore,
ℙ(X ≤ i + 1,Y ≤ j) = min(Pi+1,Qj),

as was to be proved in the first case.
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In the second case, the (k + 1)st node is (i + 1, j + 1). The diagonal segment in the S-path
appears only if Pi = Qj. Then we have

ℙ(X ≤ i + 1,Y ≤ j + 1) = ℙ(X ≤ i, Y ≤ j) + 𝔭i+1,j+1

= min(Pi,Qj) + min(Pi+1,Qj+1) − max(Pi,Qj)

= min(Pi+1,Qj+1).

The last case is analogous to the first one.

9.5.5 Approximation of the Extreme Distributions

For practical computations, the marginal distributions, P = {pi}i≥0 and Q = {qj}j≥0, with two
finite moments can be approximated by the distributions with finite support, ̃P = {p̃i}i≥0 and
̃Q = {q̃j}j≥0, such that

max
i≤I∗

|Pi − P̃i| ≤ 𝜖, 1 − PI∗ ≤ 𝜖,

max
j≤J∗

|Qj − Q̃j| ≤ 𝜖, 1 − QJ∗ ≤ 𝜖,

where Pn =
n∑

i=0
pi, Qm =

m∑
j=0

qj, P̃n =
n∑

i=0
p̃i, and Q̃m =

m∑
j=0

q̃j. Let 𝔭 ∈ 𝔇(P,Q) be an extreme

bivariate distribution and �̃� ∈ 𝔇( ̃P, ̃Q) be the corresponding extreme bivariate distribution
with the marginals, ̃P and ̃Q. Then it follows from Theorem 9.5 that �̃� satisfies the inequality

sup
i ≥ 0,
j ≥ 0

|𝔭i,j − �̃�i,j| ≤ 2𝜖.

Similar inequality can be obtained for the approximation of the correlation coefficient. We
shall formulate one sufficient condition that guarantees the approximation.

Proposition 9.5 Suppose that the first and the second moments of the marginal distributions
are finite. Then, given 𝜖 > 0, one can find the integer numbers, I∗ and J∗, such that there
exists a discrete bivariate distribution �̃�i,j, 0 ≤ i ≤ I∗, 0 ≤ j ≤ J∗ approximating the extreme
distribution, 𝔭i,j, in the following sense:

sup
i≥0

sup
j≥0
| 𝔭i,j − �̃�i,j | < 𝜖, (9.46)

||||||
∞∑

i=1

∞∑
j=1

ij⋅(𝔭i,j − �̃�i,j)
|||||| < 3𝜖. (9.47)

Proof. We consider the case of the distribution, 𝔭 = 𝔭∗∗, maximizing the correlation coeffi-
cient. Notice that the first two finite moments of a discrete random variable taking nonnegative,
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integer values satisfy the relations

𝔼[𝜉2] = 2
∞∑

k=1

kℙ(𝜉 > k) + 𝔼[𝜉], (9.48)

𝔼[𝜉] =
∞∑

k=0

ℙ(𝜉 > k). (9.49)

Since 𝔼[𝜉2] < ∞, Equations (9.48) and (9.49) imply convergence of the series
∞∑

k=1
kℙ(𝜉 > k).

Then we can find I∗ and J∗ such that∑
i>I∗

i(1 − Pi) < 𝜖∕2, (9.50)

∑
j>J∗

j(1 − Qj) < 𝜖∕2. (9.51)

Consider the distribution functions, P̃i and Q̃j:

P̃i = Pi, i = 0, 1,… , I∗ − 1; P̃i = 1, i ≥ I∗, (9.52)

Q̃j = Qj, j = 0, 1,… , J∗ − 1; Q̃j = 1, j ≥ J∗. (9.53)

Let �̃� be the extreme bivariate distribution, maximizing the correlation, corresponding to the
marginals, ̃P and ̃Q. It is not difficult to see that �̃�i,j = 0 for i ≥ I∗ or j > J∗.

The first moments of the marginal distributions satisfy the inequalities

|||||
∞∑

i=0

(1 − Pi) −
∞∑

i=0

(1 − P̃i)
||||| < 𝜖

I∗
, and

||||||
∞∑

j=0

(1 − Qj) −
∞∑

j=0

(1 − Q̃j)
|||||| <

𝜖

J∗
.

Indeed,

|||||
∞∑

i=0

(1 − Pi) −
∞∑

i=0

(1 − P̃i)
||||| =

||||||
∞∑

i=I∗

(1 − Pi) −
∞∑

i=I∗

(1 − P̃i)
||||||

≤
1
I∗

∞∑
i=I∗

i⋅(1 − Pi).

The second inequality is derived analogously. Consider the expected values

E ∶= 𝔼[XY] =
∑
i≥1

∑
j≥1

ij𝔭∗∗i,j and ̃E ∶=
∑
i≥1

∑
j≥1

ij�̃�i,j.

We have

E − ̃E =
∞∑

i=I∗

∞∑
j=J∗

ij𝔭∗∗ij +
∞∑

i=I∗

J∗∑
j=1

ij𝔭∗∗ij +
∞∑

j=J∗

I∗∑
i=1

ij𝔭∗∗ij
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The first sum, S1 ∶=
∑∞

i=I∗

∑∞
j=J∗

ij𝔭∗∗ij , satisfies the inequality

S2
1 ≤

∞∑
i=I∗

i2
∞∑

j=0

𝔭∗∗i,j ⋅
∞∑

j=J∗

j2
∞∑

i=0

𝔭∗∗i,j < 𝜖
2.

The second sum, S2 ∶=
∑∞

i=I∗

∑J∗
j=1 ij𝔭∗∗ij , satisfies the inequality

S2 ≤ J∗

∞∑
i=I∗

∞∑
j=0

i𝔭∗∗ij ≤ J∗
𝜖

J∗
= 𝜖,

and the third sum, S3 ∶=
∑∞

j=J∗

∑I∗
i=1 ij𝔭∗∗ij , also satisfies S3 ≤ 𝜖. Putting all the pieces together,

we obtain | E − ̃E | ≤ 3𝜖.

Remark 9.7 Similar reasoning allows us to prove continuity of the function f (𝔭) =∑
i≥1
∑

j≥1ij𝔭i,jon the space 𝔇(P,Q).

9.6 Numerical Results

9.6.1 Examples of the Support

We shall start with the support of the joint distribution maximizing the correlation coefficient
when 𝜆 = 𝜇. In this case, the support is a set of integer points, {(k, k)}∞k=0, on the main diagonal;
the correlation coefficient is 𝜌∗∗(𝜆, 𝜆) = 1.

Figure 9.4 displays the support of the extreme distribution, 𝔭∗∗, with the intensities 𝜆 = 3 and
𝜇 = 4. We apply the EJD algorithm with 𝜖-approximation9 of the marginal distributions, where
𝜖 = 10−5. It allows us to find (numerically) the joint probabilities, 𝔭∗∗ij , and the correlation
coefficient,

𝜌
∗∗(𝜆, 𝜇) =

∑∞
i=1
∑∞

j=1 ij𝔭∗∗ij − 𝜆𝜇√
𝜆𝜇

. (9.54)

The error of the approximation of the correlation coefficient 𝜖(𝜌) < 10−4. The maximal corre-
lation 𝜌

∗∗(𝜆, 𝜇) = 0.979 in this case. One can notice that the support of the joint distribution is
located close to the main diagonal, but for large values of the first coordinate, some deviation
from the diagonal pattern is observed. The reason for that is inequality of the intensities of
the Poisson processes, 𝜆 < 𝜇, leading to a re-balance of the probability mass of the bivariate
distribution maximizing the correlation coefficient.

In the case 𝜆 = 3, 𝜇 = 6, the deviation of the support from the main diagonal increases as
k → ∞ (see Figure 9.5). Applying the EJD algorithm, we find the joint probabilities, 𝔭∗∗ij , and
from (9.54) the correlation coefficient, 𝜌∗∗(3, 6) = 0.977.

Let us now consider an example of the support for the minimal (negative) correlation of the
random variables. We take 𝜆 = 3 and 𝜇 = 6. The joint probabilities, 𝔭∗ij, can be found by the
EJD algorithm. In this case, the minimal value of the correlation coefficient is 𝜌∗ = −0.944.
The geometric pattern of the support is different in this case because the minimal value of the
correlation coefficient is negative.

9 The same approximation of the marginal distributions is used in all examples considered in this section.
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Figure 9.4 Support of the distribution 𝔭∗∗: 𝜆 = 3, 𝜇 = 4.
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Figure 9.5 Support of the distribution 𝔭∗∗: 𝜆 = 3, 𝜇 = 6.
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Figure 9.6 Support of the distribution 𝔭∗: 𝜆 = 3, 𝜇 = 6.

9.6.2 Correlation Boundaries

The correlation coefficients, 𝜌∗(𝜆, 𝜇) and 𝜌∗∗(𝜆, 𝜇), are not monotone functions of 𝜆 as intensity
𝜇 is fixed.10 The extreme correlation coefficients are shown in Figure 9.7 for 𝜇 = 3. We also
mention here that the lower and upper boundaries are not symmetrical. It is proved in Griffiths
et al., (1979) that the two-dimensional process with variable correlation between the compo-
nents cannot be infinitely divisible. The latter fact may look surprising because the marginals
are the Poisson distributions belonging to the class of infinitely divisible distributions.

Let us now compare the correlation boundaries obtained using the traditional, forward sim-
ulation method and the BS method. We shall call the boundaries computed by the forward
simulation (FS) the FS boundaries. The boundaries computed by the backward simulation
method will be called the BS boundaries.

In Figure 9.8, the correlation boundaries are displayed for the intensities 𝜆 = 8 and 𝜇 = 4.
The time horizon T = 3. Recall that under the FS approach, we have to generate two sequences,
ΔTk and ΔT ′

k, such that

ℙ(ΔTk ≤ t) = 1 − e−𝜆t
, ℙ(ΔT ′

k ≤ t) = 1 − e−𝜇t
, t ≥ 0,

and the random variables ΔTk and ΔT ′
k have minimal possible correlation for each k; at the

same time, each of the sequences {ΔTk}k≥0 and {ΔT ′
k}k≥0 is formed by independent identically

distributed random variables.

10 This fact is established numerically. The joint probabilities should be computed with the error not exceeding 10−4

to provide proof of this fact.
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Figure 9.7 Correlation boundaries: 𝜇 = 3.

According to the Frechet–Hoeffding theorem, the interarrival times, ΔTk and ΔT ′
k, should

satisfy the relation

exp (−𝜆⋅ΔTk) + exp (−𝜇⋅ΔT ′
k) = 1, k = 1, 2,… ,

to provide minimal possible correlation between the interarrival times. The correlation coef-
ficient, 𝜌(t) = corr(Nt,N

′
t ), is computed using a Monte Carlo simulation with 900,000 Monte

Carlo samples.
The computation of the FS upper boundary in Figure 9.8 is also based on the

Frechet–Hoeffding theorem. According to the latter, the interarrival times, ΔTk and
ΔT ′

k, should satisfy the relation

𝜇ΔTk = 𝜆ΔT ′
k, k = 1, 2,… ,

to provide maximal possible correlation between the arrival moments. One can see that the
maximal correlation of the processes, Nt and N′

t , under the FS is a constant, while under the
BS it is a linear function of time. In the case 𝜆 ≠ 𝜇, the BS allows one to reach stronger
correlations of the processes than the FS of the arrival moments.

9.7 Backward Simulation of the Poisson–Wiener Process

The BS approach is applicable to the class of multivariate stochastic process with the compo-
nents formed by either Poisson or Gaussian processes. In this section, we analyze the basic
bivariate process, Xt = (Nt,Wt), where Nt is a Poisson process with intensity 𝜇; and Wt is the
Wiener process.
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Figure 9.8 Comparison of correlation boundaries: 𝜆 = 8, 𝜇 = 4.

Suppose that the joint distribution of Xt at time t = T is known. Let {X(k)}M
k=1,X(k) =

(NT (k),WT (k)) be a random sample of the size M from this distribution. For each k, we apply
the BS technique to simulate the first coordinate and the Brownian bridge construction to
simulate the second coordinate.

More precisely, consider the kth random vector, X(k) = (NT (k),WT (k)), (k = 1, 2,… ,M).
Simplifying the notation, denote n = NT (k) and x = WT (k). Let us generate the arrival
moments of the Poisson process, 0 ≤ T1 < T2 < … < Tn ≤ T . As before, the arrival moments
are obtained by sorting the sequence of n independent identically distributed random variables,
having a uniform distribution in the interval [0,T], in ascending order.

The second coordinate of the process, Xt, is generated recursively using the Brownian bridge
construction. Suppose that the process Wt has already been generated at times Tn > Tn−1 >

… > Tk and WTk
= xk. Then, at time t = Tk−1, Wt has a normal distribution, N (m(t), 𝜎2(t)),

with the parameters

m(Tk−1) =
xk⋅Tk−1

Tk
, 𝜎

2(Tk−1) =

√
Tk−1⋅(Tk − Tk−1)

Tk
.

Consider now the correlation function, 𝜌(t) = corr(Nt,Wt), of the process, Xt, (0 ≤ t ≤ T).
Our first result is the computation of the extreme correlations of this process at time T . After
that we will prove that, as in the case of the BS simulation of the Poisson processes, the cor-
relation coefficient 𝜌(t) in our case is the linear function of time, 𝜌(t) = t

T 𝜌(T).
Let us now find the extreme values of the correlation coefficient, 𝜌(T) = corr(NT ,WT ). It is

convenient to represent the random variable, 𝜁 = NT , as a function of a normally distributed
random variable, 𝜂 ∼ N (0, 1), 𝜁 = P−1

𝜆
(Φ(𝜂)), where 𝜆 = 𝜇T . The random variable WT can be
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represented as WT =
√

T𝜉, where 𝜉 ∼ N (0, 1) is a random variable with the standard normal
distribution. Then the covariance of the Poisson and Wiener processes at time T is

cov(NT ,WT ) =
√

Tcov(𝜉, 𝜁 ) =
√

T⋅𝔼[𝜉⋅𝜁 ].

Since the variance of WT is
√

T , we find

𝜌(T) =
√

T𝔼[𝜁𝜉]√
T
√
𝜇T

= corr(𝜉, 𝜁 ).

Denote by 𝜌0 the correlation coefficient of 𝜉 and 𝜂. Let us represent 𝜉 as 𝜉 = 𝜌0𝜂 +
√

1 − 𝜌
2
0
𝜂
′,

where 𝜂
′ is a standard normal random variable independent of 𝜂. We have

𝔼[𝜉⋅𝜁 ] = 𝜌0⋅Ψ(𝜆), (9.55)

where Ψ(𝜆) ∶= 𝔼[𝜂P−1
𝜆
(Φ(𝜂))]. Let us compute Ψ(𝜆). The function P

𝜆
(x) is piecewise

constant: P
𝜆
(x) = P

𝜆
([x]). Define 𝛽k ∶= P

𝜆
(k), (k = 0, 1,… ). If 𝛽k−1 ≤ Φ(𝜂) < 𝛽k, then

P−1
𝜆
(Φ(𝜂)) = k − 1. Denote 𝛾k(𝜆) ∶= Φ−1(P

𝜆
(k)). Then we find

Ψ(𝜆) =
∞∑

k=1
∫

𝛾k+1(𝜆)

𝛾k(𝜆)
kx𝜑(x)dx =

∞∑
k=1

k⋅(𝜑(𝛾k) − 𝜑(𝛾k+1)),

where 𝜑(x) is the standard normal density function. The function Ψ(𝜆) is a smooth, monotone
function of 𝜆. Then, from (9.55) and the inequality, |𝜌0| ≤ 1, we obtain

Proposition 9.6 The correlation coefficient, 𝜌(𝜉, 𝜁 ), satisfies the inequality

−
1√
𝜆

Ψ(𝜆) ≤ 𝜌(𝜉, 𝜁 ) ≤
1√
𝜆

Ψ(𝜆), 𝜆 > 0. (9.56)

Figure 9.9 displays the low and upper bounds for the correlation coefficient 𝜌(𝜉, 𝜁 ). Com-
paring Figures 9.7 and 9.9, we conclude that the correlation boundaries in Proposition 9.6 are
smooth, monotone, and symmetric, as opposed to the boundaries in the case of the Poisson
processes.

Let us now study the correlation coefficient, 𝜌(t) = corr(Nt,Wt).

Proposition 9.7 The correlation coefficient, 𝜌(t), is a linear function of time:

𝜌(t) =
t
T
⋅𝜌(T), 0 ≤ t ≤ T . (9.57)

Proof. Denote by pt(x, k) the joint density function of the Brownian motion and the Poisson
process at time t. We have

∫

∞

−∞
pt(x, k)dx = e−𝜆t (𝜆t)k

k!
,

∞∑
k=0

pt(x, k) =
e−

x2
2t√

2𝜋t
.
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Figure 9.9 Correlation bounds.

Let

p̂t(x, z) ∶=
∞∑

n=0

pt(x, n)zn
, |z| ≤ 1,

be the generating function of the sequence {pt(x, n)}∞n=0. Consider the function

Ψt(u, z) ∶= 𝔼[exp (iuWt)zNt ], u ∈ ℝ, |z| ≤ 1.

The function, Ψt, is analytical in the area |z| ≤ 1, t > 0; its second derivative satisfies

𝜕
2Ψt(u, z)
𝜕u𝜕z

||||| (u,z)=(0,1) = i⋅𝔼[Wt⋅Nt].

It is convenient to define the function

𝜓t(u, z) = −i⋅
𝜕

2Ψt(u, z)
𝜕u𝜕z

.

Then we have
𝜓t(0, 1) = 𝔼[Wt⋅Nt]. (9.58)

Taking into account that

𝔼[Wt] = 0, 𝜎
2(Wt) = t, 𝔼[Nt] = 𝜆t, 𝜎

2(Nt) = 𝜆t, 0 ≤ t ≤ T , (9.59)

we derive from (9.58) and (9.59)

𝜓t(0, 1) = 𝜌(t)⋅
√
𝜆⋅t. (9.60)
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Let us apply the BS algorithm to the process (Wt,Nt). The process Nt satisfies the relation

ℙ(Nt = m | NT = n) =
( n

m

)
qm(1 − q)n−m

, m = 0, 1,… , n,

where q = t∕T . The relation between Ψt(u, z) and ΨT (u, z) can be derived as follows. At time
t, we have

Ψt(u, z) =
∞∑

n=0
∫

∞

−∞
eiuxznpt(x, n) dx

=
∫

∞

−∞
eiuxp̂t(x, z) dx.

Lemma 9.11 The generating function, p̂t, satisfies the equation

p̂t(y, z) =
∫

∞

−∞
p̂T (x, 1 − q + zq)

1√
2𝜋𝜎(t)

e
− (y−xt∕T)2

2𝜎2(t) dx, 0 < t < T, (9.61)

where q = t∕T and 𝜎(t) =
√

t⋅(T−t)
T .

Proof. The density, pt(y,m), satisfies

pt(y,m) =
∫

∞

−∞

∞∑
n=m

( n
m

)
qm(1 − q)n−mpT (x, n)

1√
2𝜋𝜎(t)

e
− (y−xt∕T)2

2𝜎2(t) dx.

We have

∞∑
m=0

zm
∞∑

n=m

( n
m

)
qm(1 − q)n−mpT (x, n) =

∞∑
n=0

pT (x, n)
n∑

m=0

( n
m

)
(qz)m(1 − q)n−m

=
∞∑

n=0

pT (x, n)(1 − q + qz)n

= p̂T (x, 1 − q + qz).

Therefore, the generating function, p̂t(y, z), satisfies (9.61), as was to be proved.

Let us finish the proof of Proposition 9.7. The joint generating function, Ψt(u, z), is the
Fourier transform of p̂t. Therefore,

Ψt(u, z) =
∫

∞

−∞
eiuyp̂t(y, z) dy

=
∫

∞

−∞
eiuy

∫

∞

−∞
p̂T (x, 1 − q + zq)

1√
2𝜋𝜎(t)

e
− (y−xt∕T)2

2𝜎2(t) dx dy.
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Changing the order of integration, we obtain

Ψt(u, z) =
∫

∞

−∞
eiuy

∫

∞

−∞
p̂T (x, 1 − q + zq)

1√
2𝜋𝜎(t)

e
− (y−xt∕T)2

2𝜎2(t) dx dy

=
∫

∞

−∞
p̂T (x, 1 − q + zq)

∫

∞

−∞
eiuy 1√

2𝜋𝜎(t)
e
− (y−xt∕T)2

2𝜎2(t) dy dx

The inner integral

∫

∞

−∞
eiuy 1√

2𝜋𝜎(t)
e
− (y−xt∕T)2

2𝜎2(t) dy = eixqu⋅e−
u2

𝜎
2(t)

2 .

Therefore,

Ψt(u, z) = e−
u2

𝜎
2(t)

2 ⋅
∫

∞

−∞
eixqu⋅p̂T (x, 1 − q + zq) dx, (9.62)

where q = t∕T . Differentiating (9.62) twice and substituting u = 0, z = 1, we obtain

𝜓t(0, 1) =
t2

T2
⋅
∫

∞

−∞
x
𝜕

𝜕z
p̂T (x, 1)dx

=
t2

T2
⋅𝜓T (0, 1).

Then, the latter relation and (9.60) immediately imply Equation (9.57).

Remark 9.8 We have considered the backward simulation of the process with Poisson and
Wiener components. It is possible to extend this approach to the class of processes with
mean-reverting components instead of Wiener processes. In this case, the process has a
nonlinear time structure of correlations.

9.8 Concluding Remarks

The backward simulation of the multivariate Poisson processes is based on the conditional
uniformity of the unsorted arrival moments. The BS allows us to consider in a general frame-
work both Gaussian and Poisson processes describing the dynamics of risk factors. The BS
approach to the Poisson processes results in a bigger range of admissible correlations and
simpler calibration algorithm.

The computation of the extreme distributions with maximal and minimal correlations of the
Poisson processes is solved by the EJD algorithm, proposed in the present chapter, which has
a simple probabilistic interpretation. This algorithm has an intimate connection to the class of
infinite-dimensional linear optimization problems. It is interesting to understand its role in the
analysis of this class of optimization problems.

The boundaries for the correlation coefficients of the multivariate Poisson process delivered
by the EJD algorithm give necessary conditions for the existence of the process. It looks natural
to try to prove that these conditions are also sufficient. A similar question can be formulated
for the multivariate process with the Wiener and Poisson components.

The BS approach is applicable to the class of mixed Poisson processes. These models will
be studied in our future publications.
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Appendix A
A.1 Proof of Lemmas 9.2 and 9.3

A.1.1 Proof of Lemma 9.2

Consider the function, 𝜋 ∶ ℤm
+ → ℝ,

𝜋(k⃗) =
∞∑

l=0

p‖k⃗‖+l

(
k⃗ + l

k⃗

)
⋅x⃗ k⃗⋅yl, (A.1)

and denote by �̂�(z⃗) the generating function

�̂�(z⃗) ∶=
∑

k⃗∈ℤm
+

𝜋(k⃗)z⃗ k⃗.

We have to show that

�̂�(z⃗ ) = p̂

(
1 −

m∑
j=1

xj(1 − zj)

)
. (A.2)

The generating function �̂�(z⃗ ) can be written as

�̂�(z⃗ ) =
m∑

j=1

∞∑
kj=0

∞∑
l=0

p‖k⃗‖+lz⃗
k⃗

(
k⃗ + l

k⃗

)
⋅x⃗ k⃗⋅yl. (A.3)

Denote n =
∑m

j=1 kj + l. Let us also introduce the partial sums

KJ =
J∑

j=1

kj, J = 1, 2,… ,m.

Then, from Equation (A.3), we find

�̂�(z⃗ ) =
∞∑

n=0

pn⋅
n∑

k1=0

(
n
k1

)
(x1z1)k1

n−k1∑
k2=0

(
n − k1

k2

)
(x2z2)k2

n−K2∑
k3=0

(
n − K2

k3

)
(x3z3)k3 ⋅

…
n−Km−1∑

km=0

(
n − Km−1

km

)
(xmzm)km ⋅

(
1 −

m∑
j=1

xj

)n−Km

. (A.4)
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Consider the last sum,

Sm =
n−Km−1∑

km=0

(
n − Km−1

km

)
(xmzm)km ⋅

(
1 −

m∑
j=1

xj

)n−Km

.

Since Km = Km−1 + km, we obtain

Sm =

(
1 −

m−1∑
j=1

xj − xm(1 − zm)

)n−Km−1

.

Applying this transformation recursively to the sums over kj, ( j = m − 1,m − 2,… , 1), in
(A.4) we derive

�̂�(z⃗ ) =
∞∑

n=0

pn⋅

(
1 −

m∑
j=1

xj(1 − zj)

)n

= p̂

(
1 −

m∑
j=1

xj(1 − zj)

)
.

Lemma 9.2 is proved.

Remark A.1 Notice that if z⃗ = ⃗1, �̂�(z⃗ ) = 1. The function 𝜋(k⃗) ≥ 0. Therefore, {𝜋(k⃗)}k⃗∈ℤm
+

is
a probability distribution on the m-dimensional integer lattice.

A.1.2 Proof of Lemma 9.3

Derivation of Equation (9.20) is completely analogous to that of Equation (9.12) and, for this
reason, is omitted. Let us derive (9.21).

From (9.20) we find, by differentiation
(
𝜕q̂(z,𝑤)

𝜕z | z=𝑤=1,
𝜕q̂(z,𝑤)
𝜕𝑤

| z=𝑤=1

)
:

𝔼[𝜉1⋅𝜉2] = xy𝔼[𝜁1𝜁2], 𝔼[𝜉1] = x𝔼[𝜁1], 𝔼[𝜉2] = y𝔼[𝜁2],

and
cov(𝜉1, 𝜉2) = xy⋅cov(𝜁1, 𝜁2).

Then we obtain
𝜎

2(𝜉1) = x2⋅𝜎2(𝜁1) + 𝔼[𝜁1]⋅(x − x2),

and
𝜎

2(𝜉2) = y2⋅𝜎2(𝜁2) + 𝔼[𝜁2]⋅(y − y2).

If the variance and the first moment of the random variables, 𝜁i, (i = 1, 2), are equal, then

𝜎(𝜉i) =
√

x⋅𝜎(𝜁i), i = 1, 2.

Finally, we obtain
𝜌(𝜉1, 𝜉2) =

√
xy⋅𝜌(𝜁1, 𝜁2),

and Lemma 9.3 is thus proved.
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CVaR Minimizations in Support
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How to measure the riskiness of a random variable has been a major concern of financial risk
management. Among the many possible measures, conditional value at risk (CVaR) is viewed
as a promising functional for capturing the characteristics of the distribution of a random vari-
able. CVaR has attractive theoretical properties, and its minimization with respect to involved
parameters is often tractable. In portfolio selection especially, the minimization of the empir-
ical CVaR is a linear program. On the other hand, machine learning is based on the so-called
regularized empirical risk minimization, where a surrogate of the empirical error defined over
the in-sample data is minimized under some regularization of the parameters involved. Con-
sidering that both theories deal with empirical risk minimization, it is natural to look at their
interaction. In fact, a variant of support vector machine (SVM) known as 𝜈-SVM implicitly
carries out a certain CVaR minimization, though the relation to CVaR is not clarified at the
time of the invention of 𝜈-SVM.

This chapter overviews the connections between SVMs and CVaR minimization and
suggests further interactions beyond their similarity in appearance. Section 10.1 summarizes
the definition and properties of CVaR. The authors wish this section to be a quick introduction
for those who are not familiar with CVaR. Section 10.2 collects basic formulations of various
SVMs for later reference. Those who are familiar with SVM formulations can skip this
section and consult it when succeeding sections refer to the formulations therein. Section
10.3 provides CVaR minimization-based representations of the SVM formulations given
in Section 10.2. Section 10.4 is devoted to dual formulations of CVaR-based formulations.
Section 10.5 describes two robust optimization extensions of these formulations. For further
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study, Section 10.6 briefly overviews the literature regarding the interaction between risk
measure theory and SVM.

10.1 What Is CVaR?

This section introduces CVaR as a risk measure of random variables and describes its relation
to VaR and other statistics.

10.1.1 Definition and Interpretations

Let L̃ be a random variable defined on a sample space Ω (i.e., L̃ ∶ Ω → IR), and let it represent
a quantity that we would like to minimize, such as payments, costs, damages, or error. We
figuratively refer to such random variables as losses.1 In financial risk management, each ele-
ment 𝜔 ∈ Ω can be interpreted as a future state or scenario. Furthermore, let us suppose that
all random variables are associated with a probability measure ℙ on Ω (and a set of events),
satisfying 𝔼ℙ[|L̃|] < +∞. In most parts of this chapter, this assumption is satisfied because
losses are associated with empirical distributions based on finite observations, and each loss
is defined on a finite sample space (i.e., Ω = {𝜔1,… , 𝜔m}).

For a loss L̃, a risk measure is a functional that maps L̃ to IR ∪ {∞}, expressing how risky
L̃ is. Among the many risk measures, VaR is popular because it is easy to interpret.

Definition 10.1 (VaR (value-at-risk) or 𝜶-quantile of loss) The VaR of L̃ at a significant
level 𝛼 ∈ (0, 1) is defined as

VaR(𝛼,ℙ)[L̃] ∶= min
c
{c ∶ ℙ{L̃ ≤ c} ≥ 𝛼}.

The parameter 𝛼 is determined by decision makers such as fund managers. To capture the
possibility of a large loss that could occur with a small probability, the parameter 𝛼 is typically
set close to 1 in financial risk management (e.g., 𝛼 = 0.99 or 0.999). While VaR can capture
the upper tail of L̃, it fails to capture the impact of a loss beyond VaR. In addition, the lack of
convexity makes VaR intractable in risk management.2

CVaR has gained growing popularity as a convex surrogate to VaR.

Definition 10.2 (CVaR or 𝜶-superquantile of loss) The conditional value-at-risk (CVaR) of
L̃ with a significant level 𝛼 ∈ [0, 1) is defined as

CVaR(𝛼,ℙ)[L̃] ∶= inf
c

{
G(c) ∶= c +

1
1 − 𝛼

𝔼ℙ[max{L̃ − c, 0}]
}

. (10.1)

CVaR(𝛼,ℙ)[L̃] is nondecreasing in 𝛼 since the function G is nondecreasing in 𝛼.

1 In SVM and other statistical learning contexts, the word loss takes on a specific meaning. However, in this chapter,
we will use this word in a different and more general manner for the sake of consistency with risk measure theory.
2 A functional F is convex if for all L̃, L̃′

, 𝜏 ∈ (0, 1), (1 − 𝜏)F [L̃] + 𝜏F [L̃′] ≥ F [(1 − 𝜏)L̃ + 𝜏L̃′].
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Note that for 𝛼 ∈ (0, 1), “inf” in the above formula is replaced with “min.” Indeed, for 𝛼 ∈
(0, 1), Theorem 10 of Rockafellar and Uryasev (2002) shows that

argmin
c

G(c) = [VaR(𝛼,ℙ)[L̃],VaR+
(𝛼,ℙ)[L̃]], (10.2)

where VaR+
(𝛼,ℙ)[L̃] ∶= inf

c
{c ∶ ℙ{L̃ ≤ c} > 𝛼}. The relation (10.2) implies that any minimizer

in the formula (10.1) can be an approximate VaR and that if the minimizer is unique,3 it is equal
to VaR.

The definition (10.1) of CVaR implies that VaR is always bounded above by CVaR, that is,

VaR(𝛼,ℙ)[L̃] ≤ CVaR(𝛼,ℙ)[L̃],

and VaR(𝛼,ℙ)[L̃] < CVaR(𝛼,ℙ)[L̃] unless there is no chance of a loss greater than VaR. More
specifically, CVaR is represented as a convex combination of VaR and𝔼ℙ[L̃|L̃ > VaR(𝛼,ℙ)[L̃]].4
Indeed, with t

𝛼
∶= ℙ{L̃ > VaR(𝛼,ℙ)[L̃]}∕(1 − 𝛼) ∈ [0, 1], it is true that

CVaR(𝛼,ℙ)[L̃] = t
𝛼
𝔼ℙ[L̃|L̃ > VaR(𝛼,ℙ)[L̃]] + (1 − t

𝛼
)VaR(𝛼,ℙ)[L̃]. (10.3)

When L̃ follows a parametric distribution, CVaR may be explicitly given a closed formula.

Example 10.1 (CVaR under normal distribution) When L̃ follows a normal distribution
N(𝜇, 𝜎2), CVaR can be explicitly expressed as

CVaR(𝛼,ℙ)[L̃] = 𝜇 +
1

(1 − 𝛼)
√

2𝜋
exp

(
−

1
2

{
Ψ−1(𝛼)

}2
)
⋅𝜎, (10.4)

whereΨ is the cumulative distribution function of N(0, 1) (i.e.,Ψ(z) ∶= 1√
2𝜋

∫
z
−∞ exp(− 1

2 t2)dt).

On the other hand, VaR(𝛼,ℙ)[L̃] = 𝜇 + Ψ−1(𝛼)⋅𝜎.

Note that (10.4) is equal to the conditional expectation of a loss exceeding VaR, that is,

CVaR(𝛼,ℙ)[L̃] = 𝔼ℙ[L̃|L̃ > VaR(𝛼,ℙ)[L̃]] = 𝔼ℙ[L̃|L̃ ≥ VaR(𝛼,ℙ)[L̃]].

This relation also holds for other distributions as long as there is no probability atom at
VaR(𝛼,ℙ)[L̃].

However, for general loss distributions and arbitrary 𝛼, the above equalities only hold in an
approximate manner. That is, we have

𝔼ℙ[L̃|L̃ ≥ VaR(𝛼,ℙ)[L̃]] ≤ CVaR(𝛼,ℙ)[L̃] ≤ 𝔼ℙ[L̃|L̃ > VaR(𝛼,ℙ)[L̃]].

Usually, the loss distributions are not known, so an empirical distribution is used as a surrogate
of the true distribution. In such a case, there is a positive probability atom at VaR(𝛼,ℙ)[L̃] for
all 𝛼 ∈ (0, 1), and either of the equalities does not hold (see Proposition 5 of Rockafellar and
Uryasev (2002) for the details).

3 The minimizer is unique if and only if VaR+
(𝛼,ℙ)[L̃] = VaR(𝛼,ℙ)[L̃] (i.e., there is no probability atom at VaR(𝛼,ℙ)[L̃]).

4 CVaR(𝛼,ℙ)[L̃] is also considered to be the mean of the 𝛼-tail distribution of L̃. See Proposition 6 of Rockafellar and
Uryasev (2002) for the details.
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Example 10.2 (CVaR under finite scenarios) Suppose that L̃ is defined on a finite sam-
ple space Ω = {𝜔1,… , 𝜔m} equipped with ℙ{𝜔 = 𝜔i} = pi > 0, i = 1,… ,m. For 𝛼 ∈ [0, 1),
CVaR is given by

CVaR(𝛼,ℙ)[L̃] = CVaR(𝛼, p)(L) ∶= min
c

{
c +

1
1 − 𝛼

m∑
i=1

pi max{Li − c, 0}

}
,

where L ∶= (L1,… ,Lm)⊤ and p ∶= (p1,… , pm)⊤.5 In this case, CVaR can be represented with
a linear program (LP).

CVaR(𝛼, p)(L) = ||||||||
minimize

c, z
c + 1

1−𝛼
∑m

i=1 pizi,

subject to zi ≥ Li − c, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m.

(10.5)

Note that (10.5) is feasible for any L, p, and 𝛼 (e.g., (c, z1,… , zm) = (c̄,L1 − c̄,… ,Lm − c̄)
with c̄ = min{L1,… ,Lm} is a feasible solution). The dual problem of (10.5) is derived as|||||||||

maximize
q

∑m
i=1 qiLi,

subject to
∑m

i=1 qi = 1,

0 ≤ qi ≤
pi

1−𝛼 , i = 1,… ,m.

(10.6)

The solution q = p is feasible for (10.6) for any 𝛼 ∈ [0, 1), and therefore, the optimal value of
(10.6) is equal to CVaR(𝛼,p)(L) because of the strong duality of LP (see, e.g., Vanderbei, 2014).

As will be elaborated on later, (10.6) suggests that CVaR can be interpreted as the worst
expected loss over a set of probability measures, {q ∶

∑m
i=1 qi = 1, 0 ≤ qi ≤

pi
1−𝛼 , i = 1,… ,m}.

Note also that (10.6) can be viewed as a variant of the continuous (or fractional) knapsack
problem,6 and its solution is obtained in a greedy manner as follows:7

1. Sort the loss scenarios, L1,… ,Lm, in descending order, and let L(i) denote the i-th largest
component (i.e., L(1) ≥ L(2) ≥ · · · ≥ L(m)), and p(i), denote the reference probability corre-
sponding to L(i).

2. Find the integer k satisfying 1
1−𝛼

∑k
i=1 p(i) ≤ 1 <

1
1−𝛼

∑k+1
i=1 p(i). Let q(i) denote the element

of the solution vector q, corresponding to L(i) in the objective of (10.6), and set q(i) =
p(i)
1−𝛼

for i = 1,… , k, q(k+1) = 1 − 1
1−𝛼

∑k
i=1 p(i), and q(i) = 0 for i = k + 2,… ,m. Consequently,

CVaR is given by the formula

CVaR(𝛼,p)(L) =
1

1 − 𝛼

k∑
i=1

p(i)L(i) + (1 −
1

1 − 𝛼

k∑
i=1

p(i))L(k+1). (10.7)

5 Since the random variable L̃ and probability measure ℙ can be expressed as vectors L ∶= (L1,… , Lm)
⊤ and p ∶=

(p1,… , pm)
⊤, we denote CVaR(𝛼,ℙ)[L̃] by CVaR(𝛼,p)(L).

6 While the knapsack problem is formulated as a binary integer program max{
∑m

i=1 bixi ∶
∑m

i=1 cixi ≤ C, x ∈
{0, 1}m}, where ci, bi,C > 0, the corresponding continuous knapsack problem (CKP) is formulated as an LP:
max{

∑m
i=1 bixi ∶

∑m
i=1 cixi = C, x ∈ [0, 1]m}. With a change of variables xi = (1 − 𝛼)qi∕pi, (10.6) can be rewritten

into an LP with bi = piLi∕(1 − 𝛼), ci = pi, and C = 1 − 𝛼. Strictly speaking, (10.6) is not a CKP since Li, and thus bi,
can be negative. However, the same greedy algorithm is applicable.
7 This procedure shows that the complexity of computing the CVaR of a loss is at most on the order of m log m. If p
is uniform (i.e., pi = 1∕m), we can use the so-called selection algorithm whose complexity is on the order of m.
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Figure 10.1 CVaR, VaR, mean, and maximum of distribution. (a, c) The cumulative distribution func-
tion (cdf) and the density of a continuous loss distribution; (b, d) the cdf and histogram of a discrete
loss distribution. In all four figures, the location of VaR with 𝛼 = 0.8 is indicated by a vertical dashed
line. In (c) and (d), the locations of CVaR and the mean of the distributions are indicated with verti-
cal solid and dashed-dotted lines. In (b) and (d), the location of the maximum loss is shown for the
discrete case.

Formula (10.7) implies that CVaR is approximately equal to the mean of the largest 100(1 − 𝛼)
% losses L(1),… ,L(k) if

∑k
i=1 p(i) ≈ 1 − 𝛼 (see Figures 10.1b and 10.1d).

Now let us consider the complementarity condition. Namely, for any optimal solutions
(c∗, z∗) and q∗ to (10.5) and (10.6), respectively, the condition

{
(z∗i − Li + c∗)q∗i = 0, i = 1,… ,m,

z∗i {pi − (1 − 𝛼)q∗i } = 0, i = 1,… ,m,

implies z∗(i) = L(i) − c∗, i = 1,… , k, and z∗(i) = 0, i = k + 1,… ,m, where z∗(i) is the element of
the optimal solution corresponding to L(i) and p(i). Using this for the objective of (10.5) and
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comparing the result with (10.7), we find that c∗ = L(k+1). Note that

L(k+1) =

{
VaR(𝛼,p)(L) if

∑k
i=1 p(i) < 1 − 𝛼 <

∑k+1
i=1 p(i),

VaR+
(𝛼,p)(L) if

∑k
i=1 p(i) = 1 − 𝛼,

where VaR+
(𝛼,p)(L) is VaR+

(𝛼,ℙ) of L with ℙ = p, that is, minc{c ∶
∑m

i=1 pi1{Li≤c} > 𝛼}, where
1{cond} is the 0–1 indicator function (i.e., 1{cond} = 1 if cond is true, 0 otherwise). Accordingly,
formula (10.7) is an expression (10.3) for the discrete distribution case.

CVaR can also be considered to be a generalization of the average and the maximum of the
underlying random variable.

• With 𝛼 = 0, CVaR is equal to the mean of the loss, that is, CVaR(0,ℙ)[L̃] = 𝔼ℙ[L̃] (or
CVaR(0, p)(L) = 𝔼p(L) ∶= p⊤L for the discrete distribution case).

• With 𝛼 close to 1, it approximates the largest loss. Indeed, in the case of a discrete distribu-
tion, it is true that CVaR(𝛼′, p)(L) = max{L1,… ,Lm} = L(1) for 𝛼′ > 1 − p(1).

As a result of the nondecreasing property with respect to 𝛼, CVaR is typically between the
maximum and mean for an intermediate 𝛼 ∈ (0, 1 − p(1)) (see Figure 10.1d).

10.1.2 Basic Properties of CVaR

The convexity of a risk functional often makes the associated risk minimization tractable and
enables us to exploit duality theory. Those advantages of the convexity of CVaR are worth
emphasizing again.

Let us consider a probabilistic representation. Letting B be the target level of loss and 𝛼 ∈
(0, 1) be the significant level, define

ℙ{L̃ ≥ B} ≤ 1 − 𝛼. (10.8)

In general, the set of losses L̃ satisfying (10.8) is nonconvex. To avoid this nonconvexity, the
left side of (10.8) is often approximated with a convex upper bound of the form 𝔼ℙ[f (L̃)],
where f is a convex function on IR such that f (L) ≥ 1{L≥B} for all L ∈ IR. Note that 𝔼ℙ[f (L̃)] ≤
1 − 𝛼 implies ℙ{L̃ ≥ B} ≤ 1 − 𝛼 since ℙ{L̃ ≥ B} = 𝔼ℙ[1{L̃≥B}] ≤ 𝔼ℙ[f (L̃)]. The expression
𝔼ℙ[f (L̃)] ≤ 1 − 𝛼 is thus called a conservative approximation of (10.8). To tighten the bound,
it is enough to consider a piecewise linear function f (L) = max{(L − C)∕(B − C), 0}with some
C such that B > C (see Figure 10.2). Namely, (10.8) can be replaced with 𝔼ℙ[max{(L̃ − C)∕
(B − C), 0}] ≤ 1 − 𝛼, which becomes

C +
1

1 − 𝛼

𝔼ℙ[max{L̃ − C, 0}] ≤ B for some C.

Noting that this is equivalent to CVaR(𝛼,ℙ)[L̃] ≤ B, we can see that CVaR provides a tight
convex conservative approximation of the probabilistic condition (10.8).

CVaR has three properties that are useful in financial risk management; CVaR is

1. monotonic: CVaR(𝛼,ℙ)[L̃] ≥ CVaR(𝛼,ℙ)[L̃′] when L̃ ≥ L̃′;
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Figure 10.2 Convex functions dominating 1{L≥B}.

2. translation invariant: CVaR(𝛼,ℙ)[L̃ + 𝜏] = CVaR(𝛼,ℙ)[L̃] + 𝜏 for all 𝜏 ∈ IR; and
3. positively homogeneous: CVaR(𝛼,ℙ)[𝜏L̃] = 𝜏CVaR(𝛼,ℙ)[L̃] for all 𝜏 > 0.

If a convex risk functional satisfies all three of these properties, it is said to be coher-
ent (Artzner et al., 1999).8 Monotonicity is a useful property in machine learning contexts,
whereas translation invariance and positive homogeneity exist for technical reasons rather
than for intuitive reasons. However, each of these properties plays roles in tractability and
in compatibility with regularization terms (Gotoh and Uryasev, 2013).

In general, monotonicity, translation invariance, and positive homogeneity can be charac-
terized in a dual manner. To avoid unnecessary technicalities, we will assume a finite sample
space Ω = {𝜔1,… , 𝜔m} (i.e., which implies that risk functionals F are functions on IRm).9 Let
us define F∗ to be the conjugate of F , that is, F∗(𝝀) ∶= supL{L⊤L − F(L)}. Furthermore, let
us define dom F as the effective domain of F , that is, dom F ∶= {L ∈ IRm ∶ F(L) < +∞}.

Theorem 10.1 (dual characterization of risk functional properties (Ruszczyński and
Shapiro, 2006)) Suppose that F ∶ IRm → (−∞,∞) is an l.s.c.,10 proper,11 and convex
function. Accordingly:

1. F is monotonic if and only if dom F∗ is in the nonnegative orthant.
2. F is translation invariant if and only if ∀𝝀 ∈ dom F∗, 𝟏⊤m𝝀 = 1.
3. F is positively homogeneous if and only if F can be represented in the form

F(L) = sup
𝜆

{L⊤

𝝀 ∶ 𝝀 ∈ dom F∗}. (10.9)

See Ruszczyński and Shapiro (2006) for the proof.

8 CVaR is also law invariant (i.e., if the distribution functions of L̃ and L̃′ are identical, CVaR(𝛼,ℙ)[L̃] = CVaR(𝛼,ℙ)[L̃
′])

and co-monotonically additive (i.e., CVaR(𝛼,ℙ)[L̃ + L̃′] = CVaR(𝛼,ℙ)[L̃] + CVaR(𝛼,ℙ)[L̃
′] for any L̃, L̃′ satisfying

(L̃(𝜔) − L̃(𝜔′))(L̃′(𝜔) − L̃′(𝜔′)) ≥ 0 for any𝜔,𝜔′ ∈ Ω). A coherent risk measure that has these two properties is called
a spectral (or distortion) risk measure. See, for example, Acerbi (2002) for details.
9 The results hold true in a more general setting. See, for example, Rockafellar and Uryasev (2013) and Ruszczyński
and Shapiro (2006) for more general statements.
10 CVaR(𝛼,ℙ) is lower semicontinuous (l.s.c.), that is, CVaR(𝛼,ℙ)[L̃] ≤ liminf

k→∞
CVaR(𝛼,ℙ)[L̃

k] for any L̃ and any sequence

L̃1
, L̃2

,…, converging to L̃.
11 CVaR(𝛼,ℙ) is proper, that is, CVaR(𝛼,ℙ)[L̃] > −∞ for all L̃, and CVaR(𝛼,ℙ)[L̃

′] < ∞ for some L̃′.
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Figure 10.3 Illustration of QCVaR(𝛼,p) in a discrete distribution on IR3 with (p1, p2, p3) =
(5∕12, 4∕12, 3∕12). This figure shows how QCVaR(𝛼,p) varies depending on 𝛼 (𝛼 = 0.1, 0.3, 0.5, 0.7).
As 𝛼 approaches 1, QCVaR(𝛼,p) approaches the unit simplex IΠ3. The risk envelope shrinks to the point
(p1, p2, p3) = (5∕12, 4∕12, 3∕12) as 𝛼 decreases to 0.

In particular, from (10.9), we can see that any l.s.c. proper positively homogeneous con-
vex risk functional can be characterized by the effective domain of its conjugate, which is
referred to as the risk envelope. Let us denote the risk envelope of CVaR by QCVaR(𝛼,p) (i.e.,
QCVaR(𝛼,p) ∶= dom CVaR∗

(𝛼,p)).
Noting that the dual LP (10.6) is written in the form of (10.9), the risk envelope of CVaR is

QCVaR(𝛼,p) ∶= {q ∈ IRm ∶ 𝟏⊤mq = 1, 𝟎 ≤ q ≤ p∕(1 − 𝛼)}. (10.10)

Figure 10.3 illustrates an example of the risk envelope of CVaR with m = 3. The conjugate of
CVaR is given by

CVaR∗
(𝛼,p)(𝝀) = 𝛿QCVaR(𝛼,p)

(𝝀),

where 𝛿C is the indicator function of a set C (i.e., 𝛿C(𝜉) ∶= 0 if 𝜉 ∈ C, and +∞ otherwise).
Since QCVaR(𝛼,p) ⊂ IΠm ∶= {q ∈ IRm ∶ 𝟏⊤mq = 1, q ≥ 𝟎}, the dual LP (10.6) is symbolically
represented as the worst-case expected loss over a set of probabilities, that is,

CVaR(𝛼,p)(L) = max
q

{𝔼q(L) ∶ q ∈ QCVaR(𝛼,p)}. (10.11)

Indeed, any coherent function on IRm can be characterized by using a non-empty closed convex
set in IΠm in place of QCVaR(𝛼,p) (see, e.g., Artzner et al., 1999).

10.1.3 Minimization of CVaR

Now, let us consider the case where the loss is defined with one or more parameters, and find
the parameter values that minimize CVaR.
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Let the loss L̃ be parametrized with 𝜽 ∈ IRn (i.e., L̃(𝜽)), and suppose that the probability is
independent of 𝜽. Rockafellar and Uryasev (2002) prove the following theorem.

Theorem 10.2 (CVaR minimization) Let G(𝜽, c) ∶= c + 1
1−𝛼𝔼ℙ[max{L̃(𝜽) − c, 0}], and let

Θ ⊂ IRn denote the set of admissible 𝜽, and (𝜽⋆, c⋆) ∈ arg min
𝜽∈Θ,c

G(𝜽, c). Then,

1. min
𝜽∈Θ

CVaR(𝛼,ℙ)[L̃(𝜽)] = G(𝜽⋆, c⋆) = min
𝜽∈Θ,c

G(𝜽, c).

2. 𝜽⋆ ∈ argmin
𝜽∈Θ

CVaR(𝛼,ℙ)[L̃(𝜽)] and c⋆ ∈ [VaR(a,ℙ)[L̃(𝜽⋆)],VaR+
(a,ℙ)[L̃(𝜽

⋆)]].
3. Furthermore, if L̃(𝜽) is convex with respect to 𝜽, then so are both CVaR(𝛼,ℙ)[L̃(𝜽)] and

G(𝜽, c).
4. If L̃(𝜽) is homogeneous with respect to 𝜽 (i.e., for any a ∈ IR, L̃(a𝜽) = aL̃(𝜽)), then both

CVaR(𝛼,ℙ)[L̃(𝜽)] and G(𝜽, c) are positively homogeneous with respect to (𝜽, c).

The first property states that the minimization of CVaR reduces to simultaneous minimiza-
tion of the function G(𝜽, c) in 𝜽 and c. The second statement guarantees that the interpretation
of the variable c as an approximate VaR (i.e., 𝛼-quantile of L) remains valid even in the case
of CVaR minimization. The third property states that the associated CVaR minimization is a
convex minimization if L̃(𝜽) is convex in 𝜽. The fourth property, which is not exactly stated
in Rockafellar and Uryasev (2002), is that the (positive) homogeneity of the loss propagates
to that of CVaR in terms of the involved parameters. As will be discussed in Section 10.3, this
property plays a role in analyzing the form of a regularized empirical CVaR minimization.

Example 10.3 (CVaR-minimizing portfolio selection) Let R̃j denote a random rate
of return of an investable asset j, and suppose that ̃R ∶= (R̃1,… , R̃n) follows a discrete
distribution satisfying

(R̃1,… , R̃n)(𝜔i) = (Ri,1,… ,Ri,n) and pi ∶= ℙ{𝜔 = 𝜔i} > 0, i = 1,… ,m.

Let 𝜃j denote the investment ratio of asset j. To make the investment self-financing, we impose
a constraint

∑n
j=1 𝜃j = 1. In addition, to meet the investor’s requirements, several constraints

are imposed on 𝜽. We will impose, for example, a restriction of the form 𝟎 ≤ 𝜽 ≤ u with upper
bounds u ∈ IRn and r⊤𝜽 ≥ 𝜏 using the expected return r = 𝔼p[ ̃R] and the minimum target
return 𝜏 > 0. The problem of determining a portfolio (𝜃1,… , 𝜃n) that minimizes CVaR defined
with L̃(𝜽) = − ̃R

⊤

𝜽 (or, equivalently, L(𝜽) = −(R1,… ,Rm)⊤𝜽 with Ri = (Ri,1,… ,Ri,n)⊤) is
an LP: |||||||||||||||

minimize
𝜽,c,z

c + 1
1−𝛼

∑m
i=1 pizi

subject to zi ≥ −
∑n

j=1 Rij𝜃j − c, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,∑n
j=1 𝜃j = 1,

∑n
j=1 rj𝜃j ≥ 𝜏, 0 ≤ 𝜃j ≤ uj, j = 1,… , n.
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Typically, a discrete distribution is obtained from historical observations, for example, peri-
odic asset returns (e.g., daily, weekly, or monthly) in real markets, and pi = 1∕m is used unless
there is particular information about p.12

Example 10.4 (CVaR-based passive portfolio selection) Strategies seeking to mimic
market indexes such as the S&P 500 (i.e., a certain average of asset prices) are pop-
ular in portfolio management.13 Let Ĩ denote the return of an index, and assume that
(R̃1,… , R̃n, Ĩ) follows a discrete distribution satisfying (R̃1,… , R̃n, Ĩ)(𝜔i) = (Ri,1,… ,Ri,n, Ii)
and pi ∶= ℙ{𝜔 = 𝜔i} > 0, i = 1,… ,m. Measure the deviation of the portfolio return ̃R

⊤

𝜽

from the benchmark return Ĩ by using the CVaR associated with the loss L̃(𝜽) = |Ĩ − ̃R
⊤

𝜽| (or,
equivalently, L(𝜽) = (|I1 − R⊤

1 𝜽|,… , |Im − R⊤

m𝜽|)⊤ with Ri = (Ri,1,… ,Ri,n)⊤). The problem
of finding a portfolio mimicking the index can then be formulated as

||||||||||||||||

minimize
𝜽,c,z

c + 1
1−𝛼

∑m
i=1 pizi

subject to zi ≥ Ii −
∑n

j=1 Rij𝜃j − c, i = 1,… ,m,

zi ≥ −Ii +
∑n

j=1 Rij𝜃j − c, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,∑n
j=1 𝜃j = 1,

∑n
j=1 rj𝜃j ≥ 𝜏, 0 ≤ 𝜃j ≤ uj, j = 1,… , n.

10.2 Support Vector Machines

SVMs are one of the most successful supervised learning methods that can be applied to clas-
sification or regression. This section introduces several SVM formulations, whose relation to
CVaR minimization will be discussed in the succeeding sections.

10.2.1 Classification

Suppose that we have m samples (xi, yi), i = 1,… ,m, where xi ∶= (xi1,… , xin)⊤ ∈ IRn denotes
the vector of the attributes of sample i and yi ∈ { − 1,+1} denotes its binary label, i = 1,… ,m.
SVM classification (or SVC, for short) finds a hyperplane,𝒘⊤x = b, that separates the training
samples as much as possible. The labels of the new (unknown) samples can be predicted on
the basis of which side of the hyperplane they fall on.

By using the so-called kernel trick, SVC constructs a nonlinear classifier, a hyperplane in
a high (possibly, infinite) dimensional space. Namely, it implicitly uses a mapping 𝝓 ∶ IRn →
IRN (N can be infinite) and obtains a hyperplane 𝒘⊤

𝝓(x) = b and a decision function d(x) =
sign(𝒘⊤

𝝓(x) − b), where sign(z) is 1 if z ≥ 0 and −1 otherwise.

12 If (R̃1,… , R̃n) follows a multivariate normal distribution N(r,𝚺), the portfolio return (i.e., ̃R⊤

𝜽), follows a normal

distribution N(r⊤𝜽,𝜽⊤𝚺𝜽). With the loss L̃(𝜽) = − ̃R⊤

𝜽, the CVaR minimization reduces to a second-order cone pro-

gram, that is, min
𝜽∈Θ

−r⊤𝜽 + C
𝛼

√
𝜽
⊤𝚺𝜽 with C

𝛼
∶= exp (−{Ψ−1(𝛼)}2∕2)∕{(1 − 𝛼)

√
2𝜋} (see formula (10.4)). This is

equivalent to the so-called mean–variance criterion (Markowitz, 1952) for a specific trade-off parameter.
13 This type of investment strategy is called passive, while those seeking to beat the market average are called active.
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Figure 10.4 Two separating hyperplanes and their geometric margins. The dataset is said to be lin-
early separable if there exist𝒘 ≠ 𝟎 and b such that yi(𝒘⊤xi − b) > 0 for all i = 1,… ,m. If the dataset is
linearly separable, there are infinitely many hyperplanes separating the dataset. According to generaliza-
tion theory (Vapnik, 1995), the hyperplane �̂�⊤x = b̂ is preferable to �̃�⊤x = b̃. The optimization problem
(10.12) (or, equivalently, (10.13)) finds a hyperplane that separates the datasets with the largest margin.

The Vapnik–Chervonenkis theory shows that a large geometric margin classifier has a small
generalization error (Vapnik, 1995). Namely, the search for a hyperplane that has the largest
distance to the nearest data points decreases the upper bound of the out-of-sample error. Moti-
vated by this theoretical result, Boser et al. (1992) developed an algorithm for finding a hyper-
plane (𝒘, b) with the maximum geometric margin, which is formulated as

maximize
𝒘,b

min
i=1,…,m

yi(𝒘⊤
𝝓(xi) − b)‖𝒘‖2

= −minimize
𝒘,b

max
i=1,…,m

−yi(𝒘⊤
𝝓(xi) − b)‖𝒘‖2

, (10.12)

where ‖⋅‖2 denotes the 𝓁2-norm (or the Euclidean norm), that is, ‖𝒘‖2 ∶=
√
𝒘⊤𝒘.

If the data samples are linearly separable, that is, there exists a hyperplane that separates
the samples xi such that yi = +1 from those such that yi = −1, as in Figure 10.4, the fractional
optimization (10.12) can be rewritten as the following quadratic program:||||||

minimize
𝒘,b

1
2‖𝒘‖2

2

subject to yi(𝒘⊤
𝝓(xi) − b) ≥ 1, i = 1, · · · ,m.

(10.13)

This is called hard-margin SVC. Note that (10.13) is valid only when the training samples are
linearly separable.

10.2.1.1 C-Support Vector Classification

Cortes and Vapnik (1995) extend the SVC algorithm to linearly nonseparable cases and trade
off the margin size with the data separation error. More precisely, by introducing slack variables
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z1,… , zm and adding their sum to the objective function, the hard-margin SVC formulation
can be modified into

fCSVC ∶= |||||||||
minimize

𝒘,b,z

1
2‖𝒘‖2

2 + C
∑m

i=1 zi,

subject to zi ≥ −yi(𝒘⊤
𝝓(xi) − b) + 1, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,

(10.14)

where C > 0 is a user-defined parameter. Formulation (10.14) is often viewed as a correction
that adds the so-called hinge loss

∑m
i=1 max{Li + 1, 0} with Li = −yi(𝒘⊤

𝝓(xi) − b), as a surro-
gate of the 0–1 loss

∑m
i=1 1{Li≥0}, which would otherwise involve nonconvexity.14 Formulation

(10.14) is usually referred to as C-SVC,15 and it has been shown to work very well in various
real-world applications (see, e.g., Schölkopf and Smola, 2002).

The (Lagrangian) dual formulation of (10.14) is derived as

fCSVC = ||||||
maximize

𝝀

∑m
i=1 𝜆i − 1

2

∑m
h=1

∑m
i=1 𝜆i𝜆hyiyhk(xi, xh)

subject to
∑m

i=1 yi𝜆i = 0, 0 ≤ 𝜆i ≤ C, i = 1,… ,m.

(10.15)

Here, k(xi, xh) = 𝝓(xi)⊤𝝓(xh) is a kernel function defined directly on the inputs of xi and xh.
The use of a kernel function is preferable to that of the explicit mapping 𝝓(⋅), because we can
treat a highly nonlinear mapping without bothering about how large the dimension N of the
mapped space should be.

Moreover, by using the optimality condition, we can recover a dual solution from a primal
solution.16 With an optimal solution (𝒘⋆

, b⋆, z⋆,𝝀⋆), the decision function is given by

d(x) = sign(
m∑

i=1

𝜆
⋆

i yik(xi, x) − b⋆).

10.2.1.2 𝝂-Support Vector Classification

𝜈-SVC is another formulation of soft-margin SVC (Schölkopf et al., 2000),

f
𝜈−SVC ∶= |||||||||

minimize
𝒘,b,𝜌,z

1
2‖𝒘‖2

2 − 𝜈𝜌 + 1
m

∑m
i=1 zi,

subject to zi ≥ −yi(𝒘⊤
𝝓(xi) − b) + 𝜌, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,

(10.16)

where 𝜈 ∈ (0, 1] is a user-defined parameter. The dual of (10.16) is described as

f
𝜈−SVC = |||||||||

maximize
𝝀

− 1
2

∑m
h=1

∑m
i=1 𝜆i𝜆hyiyhk(xi, xh)

subject to
∑m

i=1 𝜆i = 1,
∑m

i=1 yi𝜆i = 0,

0 ≤ 𝜆i ≤
1
𝜈m , i = 1,… ,m.

(10.17)

14 More precisely, hinge loss is viewed as a special case of the convex upper bound, max{(L − C)∕(B − C), 0} with
B = 0 and C = −1, of the 0–1 loss, as shown in Figure 10.2.
15 To make a contrast with (10.13), formulations of this type are sometimes referred to as soft-margin SVCs.
16 Strong duality also holds (i.e., the optimal values of (10.14) and (10.15) approach the same fCSVC).
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Formulation (10.17) indicates that the optimal value of (10.16) as well as (10.17) is
non-increasing with respect to 𝜈. Moreover, the optimal value is nonpositive (or unbounded)
because (𝒘, b, 𝜌, z) = 𝟎 is feasible for (10.16).

Note that (10.17) is not necessarily well defined for any 𝜈 between 0 and 1 (Chang and Lin,
2001; Crisp and Burges, 2000). Let m+ (resp. m−) denote the number of samples with positive
(resp. negative) labels. When 𝜈 is larger than 𝜈max ∶= 2min{m+,m−}∕m, we can show that
the primal 𝜈-SVC (10.16) is unbounded and the dual 𝜈-SVC (10.17) becomes infeasible. On
the other hand, when 𝜈 is smaller than some threshold 𝜈min, 𝜈-SVC produces a trivial solution
satisfying (𝒘, b) = 𝟎 (Chang and Lin, 2001). The lower threshold 𝜈min is defined as the smallest
upper bound of 𝜈 with which the optimal value of 𝜈-SVC becomes zero.17

Schölkopf et al., (2000) show that the relation between 𝜈-SVC and C-SVC is as follows.

Theorem 10.3 (Schölkopf et al. 2000) Suppose that (10.16) has an optimal solution
(𝒘, b, 𝜌, z) with 𝜌 > 0. Then (10.14) with C = 1∕(𝜌m) provides the same decision function as
(10.16) does.

Crisp and Burges (2000) show that an optimal solution of 𝜈-SVC (10.16) satisfies 𝜌 ≥ 0. In
the above sense, 𝜈-SVC and C-SVC are equivalent except for the case of 𝜌 = 0.

10.2.1.3 Extended 𝝂-Support Vector Classification

Recall that for 𝜈 ∈ (0, 𝜈min), 𝜈-SVC produces a trivial solution satisfying (𝒘, b) = 𝟎. To prevent
this, Perez-Cruz et al. (2003) require the norm of 𝒘 to be unity:||||||||||||

minimize
𝒘,b,𝜌,z

−𝜌 + 1
𝜈m

∑m
i=1 zi,

subject to zi ≥ −yi(𝒘⊤
𝝓(xi) − b) + 𝜌, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,‖𝒘‖2 = 1.

(10.18)

As a result of this modification, a nontrivial solution can be obtained even for 𝜈 ∈ (0, 𝜈min).
This modified formulation is called extended 𝜈-SVC (E𝜈-SVC).

Problem (10.18) is nonconvex because of the equality-norm constraint ‖𝒘‖2 = 1.18 For
𝜈 ∈ [𝜈min, 𝜈max], E𝜈-SVC has the same optimal solutions as 𝜈-SVC does and can be reduced
to 𝜈-SVC. Perez-Cruz et al. (2003) experimentally show that the out-of-sample performance
of E𝜈-SVC with 𝜈 ∈ (0, 𝜈min] is often better than that with 𝜈 ∈ (𝜈min, 𝜈max].

10.2.1.4 One-class 𝝂-Support Vector Classifications

Next, we will consider a problem that has been referred to as outlier/novelty detection,
high-density region estimation, or domain description.19

17
𝜈-SVC with 𝜈 = 𝜈min may result in a nontrivial solution, whereas 𝜈-SVC with 𝜈 ∈ (0, 𝜈min) always results in the

trivial solution. The computation of 𝜈min will be discussed in Section 10.4.
18 Perez-Cruz et al. (2003) propose an iterative algorithm for computing a solution. It goes as follows. First, for some �̄�
satisfying ‖�̄�‖2

2 = 1, define an LP by replacing ‖𝒘‖2
2 = 1 by �̄�⊤

𝒘 = 1, and solve it. Then, use the obtained solution
�̂� to update �̄�, and repeat this procedure until convergence.
19 This class of problems is sometimes referred to as one-class classification or, more broadly, unsupervised learning.
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Let X ∶= {x1,… , xm} ⊂ IRn be a given dataset. The one-class problem is to define (possi-
ble) outliers in X. An outlier detection model known as a one-class 𝜈-support vector machine
(Schölkopf and Smola, 2002) is formulated as

|||||||||
minimize

𝒘,𝜌,z
1
2‖𝒘‖2

2 − 𝜈𝜌 + 1
m

∑m
i=1 zi,

subject to zi ≥ −𝒘⊤
𝝓(xi) + 𝜌, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,

(10.19)

where 𝜈 ∈ (0, 1] is a user-defined parameter. With an optimal solution (𝒘⋆
, 𝜌

⋆
, z⋆), a sam-

ple x satisfying 𝒘⋆⊤

𝝓(x) < 𝜌
⋆ is regarded as an “outlier.” Or, equivalently, we can define a

high-density region to be the set {x ∈ IRn ∶ 𝒘⋆⊤

𝝓(x) ≥ 𝜌
⋆}. We will see in Section 10.3.1

that the (10.19) formulation can be interpreted on the basis of CVaR.
Support vector domain description (SVDD) (Tax and Duin, 1999) is a variant of the one-class

problem. It detects (possible) outliers on the basis of the quadratically constrained optimization
problem, |||||||||

minimize
𝜸,R,z

R2 + C
∑m

i=1 zi,

subject to zi ≥ ‖𝝓(xi) − 𝜸‖2
2 − R2

, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,

(10.20)

where C > 0 is a user-defined parameter. SVDD defines outliers as points xi satisfy-
ing ‖𝝓(xi) − 𝜸⋆‖2 > R⋆ by using an optimal solution (𝜸⋆,R⋆

, z⋆) of (10.20). Since the
high-density region of x is defined as {x ∈ IRn ∶ ‖𝝓(x) − 𝜸⋆‖2 ≤ R⋆}, this type of problem
is called high-density region estimation or domain description. The high-density region
is compact even when 𝝓 is a linear mapping, whereas one-class 𝜈-SVM (10.19) is not
compact then.

10.2.2 Regression

Following its success in classification, SVC was extended so that it could handle real-valued
outputs (Drucker et al., 1997), (Schölkopf et al., 2000). The support vector regression (SVR)
method performs well in regression analysis and is a popular data analysis tool in machine
learning and signal processing.

Let us consider the regression problem of obtaining a model y = 𝒘⊤
𝝓(x) + b using m train-

ing samples, (xi, yi), i = 1, · · · ,m, where xi ∈ IRn is an input and yi ∈ IR is the corresponding
output value.

10.2.2.1 𝝐-Support Vector Regression

In the 𝜖-SVR framework (Drucker et al., 1997), the model, or equivalently, (𝒘, b), is deter-
mined so that the following regularized empirical risk functional is minimized:

minimize
𝒘,b

1
2
‖𝒘‖2

2 + C
m∑

i=1

max{|yi −𝒘⊤

𝝓(xi) − b| − 𝜀, 0},
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where C and 𝜀 are positive constants. Among the two parameters, C > 0 is a regularization con-
stant that controls the trade-off between the goodness-of-fit and the complexity of the model.
The parameter 𝜀 controls the sensitivity to the residuals (i.e., |yi −𝒘⊤

𝝓(xi) − b|). A potential
weakness of the 𝜀-SVR formulation is that the choice of 𝜀 is not intuitive.20

10.2.2.2 𝝂-Support Vector Regression

Another formulation of SVR, called 𝜈-SVR, was proposed by Schölkopf et al. (2000); it uses
a parameter 𝜈 ∈ (0, 1), instead of 𝜀 in 𝜀-SVR. The optimization formulation of 𝜈-SVR is||||||||||||

minimize
𝒘,b,c,z

H
2 ‖𝒘‖2

2 + c + 1
𝜈m

∑m
i=1 zi,

subject to zi ≥ yi −𝒘⊤
𝝓(xi) − b − c, i = 1,… ,m,

zi ≥ −yi +𝒘⊤
𝝓(xi) + b − c, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,

(10.21)

where H > 0 is a user-defined constant. By setting 𝜈 = 1 and restricting c = 𝜖, the (10.21)
formulation reduces to the 𝜖-SVR formulation.

10.3 𝝂-SVMs as CVaR Minimizations

In this section, we reformulate several SVMs in terms of CVaR minimization. We classify the
CVaR minimizations into two cases: Case 1, where the loss L(𝜽) is homogeneous with respect
to the involving parameters 𝜽 (i.e., for any a ∈ IR, L(a𝜽) = aL(𝜽)); and Case 2, where the loss
L(𝜽) is not homogeneous.

10.3.1 𝜈-SVMs as CVaR Minimizations with Homogeneous Loss

We can formulate various machine-learning methods by using different types of loss. Let us
begin with a binary classification problem defined with the positively homogeneous loss.

10.3.1.1 𝝂-SVC as a CVaR Minimization

Using the notation of CVaR with a linear loss Li(𝒘, b) = −yi(𝒘⊤
𝝓(xi) − b) and pi = 1∕m,

i = 1,… ,m, the quadratic program (10.16) can be symbolically rewritten as

minimize
𝒘,b

1
2
‖𝒘‖2

2 + C⋅CVaR(1−𝜈,𝟏m∕m)(−Y(X𝒘 − 𝟏mb)), (10.22)

with C = 𝜈, where

Y ∶= diag(y) ∶=
⎛⎜⎜⎜⎝

y1

⋱

ym

⎞⎟⎟⎟⎠ ∈ IRm×m
, X ∶=

⎛⎜⎜⎜⎝
𝝓(x1)⊤

⋮

𝝓(xm)⊤

⎞⎟⎟⎟⎠ ∈ IRm×N
.

20 The function max{|yi −𝒘
⊤
𝝓(xi) − b| − 𝜀, 0} is called Vapnik’s 𝜀-insensitive loss function.
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Note that (10.22) is a regularized empirical risk minimization in which CVaR is used as the
empirical risk (see Figure 10.5). Note also that the empirical risk part in (10.22) is homoge-
neous in (𝒘, b). To deal with the trade-off between the regularization term and the empirical
CVaR, we may be able to perform another form of optimization,

minimize
𝒘,b

1
2
‖𝒘‖2

2 subject to CVaR(1−𝜈,𝟏m∕m)(−Y(X𝒘 − 𝟏mb)) ≤ −D, (10.23)

and21

minimize
𝒘,b

CVaR(1−𝜈,𝟏m∕m)(−Y(X𝒘 − 𝟏mb)) subject to ‖𝒘‖2 ≤ E, (10.24)

where C, D, and E are positive parameters for reconciling the trade-off. Under a mild assump-
tion, the above three regularized empirical risk minimizations are equivalent for any positive
parameters C,D, and E (see Tsyurmasto et al., 2013).22 Accordingly, C,D, and E can be
restricted to 1. For example, (10.24) can be restricted to||||||

minimize
𝒘,b

CVaR(1−𝜈,𝟏m∕m)(−Y(X𝒘 − 𝟏mb))

subject to ‖𝒘‖2 ≤ 1.
(10.25)

It is worth emphasizing that the equivalence of (10.22), (10.23), and (10.24) (or (10.25)) relies
on the homogeneity of the empirical CVaR with respect to (𝒘, b). Conversely, such an equiva-
lence also holds true for any positively homogeneous risk functionalsF(⋅) in combination with
a homogeneous loss L(𝜽), that is, F(L(𝜽)). On the other hand, with the hinge loss employed
in C-SVC (10.14), a risk-constrained variant like (10.23) is infeasible for any D > 0, and a
parallel equivalence is no longer valid.

10.3.1.2 E𝝂-SVC as the Geometric Margin-based CVaR Minimization

E𝜈-SVC (10.18) can be symbolically rewritten as||||||
minimize

𝒘,b
CVaR(1−𝜈,𝟏m∕m)(−Y(X𝒘 − 𝟏mb))

subject to ‖𝒘‖2 = 1.
(10.26)

Comparing (10.25) and (10.26), we can see that 𝜈-SVC (10.25) is a convex relaxation of
E𝜈-SVC (10.26).

Note that when 𝜈 is in the range (𝜈min, 𝜈max), the optimal value of (10.25) (i.e., the minimum
CVaR) is negative, and ‖𝒘‖2 = 1 is attained at optimality because of the homogeneity of
the objective function. In other words, when 𝜈 > 𝜈min, the equality constraint ‖𝒘‖2 = 1 in

21 Based on the discussion at the end of Section 10.1, the CVaR-constraint in (10.23) can be regarded as a convex
conservative approximation of the chance constraint ℙ{L̃(𝒘, b) ≥ −D} ≤ 𝜈.
22 This equivalence holds in the sense that these models provide the same optimal decision functions d(x) =
sign(𝒘⊤

𝝓(x) − b) for any C, D, and E. Schölkopf et al. (2000) use the optimality condition to show the indepen-
dence of the resulting classifiers of the parameter C. On the other hand, Tsyurmasto et al. (2013) show equivalence
only on the basis of functional properties of CVaR such as positive homogeneity and continuity.
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Figure 10.5 𝜈-SVC as a CVaR minimization. The figure on the left shows an optimal separating
hyperplane 𝑤

⋆

1 x1 +𝑤
⋆

2 x2 = b⋆ given by 𝜈-SVC (𝜈 = 0.3). The one on the right is a histogram of
the optimal distribution of the negative margin, −yi(𝑤⋆

1 x1i +𝑤
⋆

2 x2i − b⋆), i = 1,… , 100. The locations
of the minimized CVaR (solid line) and the corresponding VaR (broken line) are indicated in the
histogram.

(10.26) can be relaxed to ‖𝒘‖2 ≤ 1 without changing the optimal solution. On the other hand,
when 𝜈 < 𝜈min, 𝜈-SVC (10.25) results in a trivial solution satisfying (𝒘, b) = 𝟎.23 Therefore,
to obtain a solution to E𝜈-SVM (10.26) for 𝜈 < 𝜈min, a nonconvex optimization method needs
to be applied (Gotoh and Takeda, 2005; Perez-Cruz et al., 2003; Takeda and Sugiyama, 2008).
Figure 10.6 illustrates the relation between the sign of the optimal value of E𝜈-SVC (10.26)
and 𝜈.

Note that (10.18) can be equivalently rewritten as

minimize
𝒘,b,c

c +
1
𝜈m

m∑
i=1

max

{
−yi(𝒘⊤

𝝓(xi) − b)‖𝒘‖2
− c, 0

}
, (10.27)

(Takeda and Sugiyama, 2008). Namely, E𝜈-SVC (10.18) can be described as another CVaR
minimization problem,

minimize
𝒘,b

CVaR(1−𝜈,𝟏m∕m)

(
−

Y(X𝒘 − 𝟏mb)‖𝒘‖2

)
,

by adopting the negative geometric margin as the loss, that is, Li(𝒘, b) = −yi(𝒘⊤
𝝓(xi) −

b)∕‖𝒘‖2, i = 1,… ,m. Since CVaR includes the maximum loss as a special limiting case (see
Section 10.1.1), formulation (10.27) is a generalization of the maximum margin formulation
(10.12). Figure 10.7 summarizes the relations among the four CVaR minimizations.

23 In this case, ‖𝒘‖2 = 1 of E𝜈-SVC (10.26) can be relaxed to ‖𝒘‖2
≥ 1, but the resulting optimization problem is

still nonconvex.
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Figure 10.6 Minimized CVaR and corresponding VaR with respect to 𝜈. CVaR indicates the optimal
value of E𝜈-SVC (10.26) for binary classification. 𝜈min is the value of 𝜈 at which the optimal value
becomes zero. For 𝜈 > 𝜈min, E𝜈-SVC (10.26) reduces to 𝜈-SVC (10.25). For 𝜈 < 𝜈min, 𝜈-SVC (10.25)
results in a trivial solution, while E𝜈-SVC (10.26) still attains a nontrivial solution with the positive
optimal value.
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Figure 10.7 Relations among four classification formulations. The two formulations on the left are
equivalent to the standard 𝜈-SVC (10.16), while those on the right are equivalent to E𝜈-SVC (10.18). By
resolving the nonconvexity issues that arise from the equality constraint, E𝜈-SVC provides a classifier
that cannot be attained by 𝜈-SVC.
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10.3.1.3 One-class 𝝂-SVC as a CVaR Minimization

With Li(𝒘) = −𝒘⊤
𝝓(xi) and regularization term 1

2‖𝒘‖2
2, we obtain a CVaR minimization,

minimize
𝒘

CVaR(1−𝜈,𝟏m∕m)(−X𝒘) +
1
2
‖𝒘‖2

2, (10.28)

which is equivalent to one-class 𝜈-SVC (10.19).24 Namely, outliers found by (10.19) are
viewed as points xi having values −𝒘⊤

𝝓(xi) greater than the 100𝜈-percentile under the CVaR
minimizer 𝒘.

10.3.2 𝜈-SVMs as CVaR Minimizations with Nonhomogeneous Loss

Next, we consider cases where the loss is not homogeneous with respect to the involved
parameters.

10.3.2.1 CVaR-based Regression and 𝝂-SVR

Assuming a regression model y = b +𝒘⊤
𝝓(x), we can employ a loss of the form Li(b,𝒘) =

𝜖(yi − {b +𝒘⊤
𝝓(xi)}), where 𝜖 ∶ IR → [0,+∞]. Note that this is no longer homogeneous in

(b,𝒘). By using this loss and p, we can readily attain a regression version of CVaR minimiza-
tion:

minimize
b,𝒘

CVaR(1−𝜈,p)(𝜖(y1 − {b +𝒘⊤

𝝓(x1)}),… , 𝜖(ym − {b +𝒘⊤

𝝓(xm)})). (10.29)

In particular, when 𝜈 = 1, (10.29) includes a number of popular regression formulations. For
example:

• With p = 𝟏m∕m and 𝜖(z) = z2, (10.29) is equivalent to ordinary least squares (OLS).
• With arbitrary p ∈ IΠm and 𝜖(z) = z2, it is equivalent to a weighted least square with a weight

vector p.
• With p = 𝟏m∕m and 𝜖(z) = az for z ≥ 0 and 𝜖(z) = −(1 − a)z for z < 0 with some a ∈ (0, 1),

(10.29) is equivalent to quantile regression (Koenker and Bassett, 1978).

By adding a certain regularizer, we can attain more generalized formulations:

minimize
b,𝒘

“Objective of (10.29)” + Cg(‖𝒘‖), (10.30)

where C ≥ 0 is a constant, g ∶ [0,∞) → (−∞,+∞] a nondecreasing function, and ‖⋅‖ a norm.
For example:

• With 𝜈 = 1, p = 𝟏m∕m, 𝜖(z) = z2, and g(‖𝒘‖) = 1
2‖𝒘‖2

2, it is equivalent to ridge regression
(Hoerl and Kennard, 1970).

24 Since the loss Li(𝒘) = −𝒘⊤
𝝓(xi) is positively homogeneous with respect to𝒘, we can show that (10.19) is equiv-

alent to min{ 1
2‖𝒘‖2

2 ∶ CVaR(1−𝜈,𝟏m∕m)(L(𝒘)) ≤ −1} and min{CVaR(1−𝜈,𝟏m∕m)(L(𝒘)) ∶ ‖𝒘‖2 ≤ 1} in the sense that
all of them provide the same decision function, as in two-class 𝜈-SVC.
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Figure 10.8 𝜈-SVR as a CVaR minimization. The left figure shows the regression model y = 𝑤
⋆x + b⋆

given by 𝜈-SVR (𝜈 = 0.2). The right one shows the histogram of the optimal distribution of the resid-
ual |yi −𝑤

⋆xi − b⋆|, i = 1,… , 100. The locations of the minimized CVaR (green solid line) and the
corresponding VaR (red dashed line) are indicated in the histogram.

• With 𝜈 = 1, p = 𝟏m∕m, 𝜖(z) = z2, and g(‖𝒘‖) = ‖𝒘‖1, it is equivalent to lasso regression
(Tibshirani, 1996).

See Chapter 11 written by Uryasev for the definitions and a general look at ridge regression
and lasso.

If 𝜈 < 1, (10.30) is related to 𝜈-SVR. Indeed, with p = 𝟏m∕m, 𝜖(z) = |z|, and g(‖𝒘‖) =
1
2‖𝒘‖2

2, it is equivalent to 𝜈-SVR (10.21). Figure 10.8 shows the results of 𝜈-SVR and the
distribution of the residual.

Different from formulations (10.16) and (10.19) for the classification problem, formulation
(10.21) depends on a trade-off parameter H in addition to 𝜈. Indeed, the value of H changes
the decision function d(x) of (10.21). (10.21) is also different from the norm-constrained
formulation: |||||||||||||||||

minimize
𝒘,b,c,z

c + 1
𝜈m

∑m
i=1 zi,

subject to zi ≥ yi −𝒘⊤
𝝓(xi) − b − c, i = 1,… ,m,

zi ≥ −yi +𝒘⊤
𝝓(xi) + b − c, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m,

‖𝒘‖2 ≤ E,

(10.31)

unless E and H are appropriately set. This dependence on the parameters is due to the lack of
positive homogeneity of the loss L(b,𝒘). On the other hand, the CVaR minimization (10.29)
has an optimal solution for any 𝜈 ∈ (0, 1), unlike 𝜈-SVC.
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10.3.2.2 Domain Description Problems as CVaR Minimizations

If we use a loss of the form Li(𝜸) = g(‖𝝓(xi) − 𝜸‖) with a nondecreasing convex function g
defined over (0,∞) and a norm ‖⋅‖, we arrive at another CVaR minimization,

minimize
𝜸

CVaR(1−𝜈,p)(g(‖𝝓(x1) − 𝜸‖),… , g(‖𝝓(xm) − 𝜸‖)),
which can be explicitly rewritten as a convex optimization problem,|||||||||

minimize
𝜸,c,z

c + 1
𝜈

∑m
i=1 pizi,

subject to zi ≥ g(‖𝝓(xi) − 𝜸‖) − c, i = 1,… ,m,

zi ≥ 0, i = 1,… ,m.

(10.32)

In particular, when we employ g(‖⋅‖) = ‖⋅‖2
2, C = 1∕𝜈, and p = 𝟏m∕m, it is equivalent

to SVDD (10.20). Namely, SVDD minimizes the CVaR of the distribution of the squared
Euclidean distance ‖𝝓(xi) − 𝜸‖2 from a center 𝜸.

Formulation (10.32) can be considered to be a generalized version of the so-called mini-
mum enclosing ball. Indeed, let us suppose that g is an increasing function. When 𝜈 < min

i
pi,

formulation (10.32) becomes the optimization for obtaining a minimum ball enclosing the set
of m points 𝝓(x1),… ,𝝓(xm):||||||

minimize
𝜸,r

r,

subject to r ≥ ‖𝝓(xi) − 𝜸‖, i = 1,… ,m.

On the other hand, when 𝜈 = 1, (10.32) becomes

minimize
𝜸

m∑
i=1

pig(‖𝝓(xi) − 𝜸‖),
which is known to characterize various centers of points 𝝓(x1),… ,𝝓(xm) depending on the
norm ‖⋅‖ employed.25

10.3.3 Refining the 𝜈-Property

So far, we have shown that 𝜈-SVMs can be viewed as CVaR minimizations, each being asso-
ciated with a certain loss function. This fact enables us to look at SVMs on the basis of the
distribution of the loss, (L1,… ,Lm), as described in Section 10.1.

10.3.3.1 𝝂-property

An advantage of 𝜈-SVM over C-SVM is that 𝜈 can be interpreted on the basis of the so-called
𝜈-property.

25 For example, with g(‖⋅‖) = ‖⋅‖2
2, the optimal 𝜸 is equal to the weighted average of 𝝓(x1),… ,𝝓(xm); with g(‖⋅‖) =‖⋅‖1, it is equal to the median center of 𝝓(x1),… ,𝝓(xm); with g(‖⋅‖) = ‖⋅‖2, it is equal to the geometric median (or

one-median) of 𝝓(x1),… ,𝝓(xm). When 𝝓(xi) ∈ IR2 or IR3, the optimal 𝛾 is sometimes called the Fermat–Weber
point.
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The 𝜈-property is usually defined using the Karush–Kuhn–Tucker (KKT) condition (see,
e.g., Vanderbei (2014) for the KKT condition). More precisely, let us consider 𝜈-SVC (10.16).
Given an optimal solution (𝒘⋆

, b⋆, c⋆, z⋆) to (10.16) and 𝝀⋆ to (10.17), let us denote the set
of samples that contribute to the margin error and the set of support vectors (SVs) by

Err ∶= {i ∈ I ∶ z⋆i > 0}, SV ∶= {i ∈ I ∶ 𝜆
⋆

i > 0},

where I ∶= {1,… ,m}. Accordingly, the margin error and number of SVs can be expressed
as |Err| and |SV|. Note that Err ⊂ SV and

|SV| − |Err| = |{i ∈ I ∶ −yi(x⊤i 𝒘
⋆ − b⋆) = c⋆}|. (10.33)

Proposition 10.1 (𝝂-property (Schölkopf et al., 2000)) Any KKT solution to 𝜈-SVC (10.16)
or (10.17) satisfies |Err|

m
≤ 𝜈 ≤

|SV|
m

.

This proposition says that 𝜈 is an upper bound of the fraction of margin errors and a lower
bound of the fraction of SVs.26

Because of (10.33), we can see that the number of SVs is bounded above by a number
depending on 𝜈, as well. Indeed, we have

m𝜈 ≤ |SV| ≤ m𝜈 + |{i ∈ I ∶ −yi(x⊤i 𝒘
⋆ − b⋆) = c⋆}|.

10.3.3.2 Quantile-based 𝝂-property

The 𝜈-property described above depends on the KKT condition of the optimization problems
(10.16) and (10.17). However, the interpretation of 𝜈 is independently obtained from the defi-
nition of the quantile (i.e., VaR).

Let us refine the margin errors and support vectors with the notion of VaR. Denoting

Err(𝜈,p)(𝜽) ∶= {i ∈ I ∶ Li(𝜽) > VaR(1−𝜈,p)(L(𝜽))},

we can define the quantile-based margin error as |Err(𝜈,p)(𝜽)|. Furthermore, we can denote the
set of quantile-based support vectors by

SV(𝜈,p)(𝜽) ∶= {i ∈ I ∶ Li(𝜽) ≥ VaR(1−𝜈,p)(L(𝜽))}.

Note that the difference between Err(𝜈,p)(𝜽) and SV(𝜈,p)(𝜽) is only in the equality in
the above definitions. Indeed, we have |SV(𝜈,p)(𝜽)| − |Err(𝜈,p)(𝜽)| = |{i ∈ I ∶ Li(𝜽) =
VaR(1−𝜈,p)(L(𝜽))}|, and the following proposition is straightforward.

Proposition 10.2 The following holds for any 𝜽:|Err(𝜈,p)(𝜽)|
m

≤ 𝜈 ≤
|SV(𝜈,p)(𝜽)|

m
.

26 Note that E𝜈-SVC also has this property because this proposition only relies on the KKT condition.
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Similarly to the standard notion of SVs, the following holds:

m𝜈 ≤ |SV(𝜈,p)(𝜽)| ≤ m𝜈 + |{i ∈ I ∶ Li(𝜽) = VaR(1−𝜈,p)(L(𝜽))}|. (10.34)

Note that the inequalities in Proposition 10.2 are valid for any 𝜽, whereas the ordinary
𝜈-property of Proposition 10.1 is shown for a KKT solution (i.e., an optimal solution). By
separately defining the risk functional and optimization as in Sections 10.1.1 and 10.1.3, we
can introduce the 𝜈-property independently of the optimality condition. Accordingly, the above
relation (10.34) suggests that the number of SVs can be reduced by making 𝜈 small.

10.3.3.3 Generalization Bounds for 𝝂-SVC and E𝝂-SVC

The goal of learning methods is to obtain a classifier or a regressor that has a small generaliza-
tion error. As mentioned in Section 10.2.1, the maximum margin hyperplane of hard-margin
SVC minimizes an upper bound of the generalization error. This is considered as the reason
why a high generalization performance can be obtained by hard-margin SVC for linearly sep-
arable datasets. Here, we give generalization error bounds based on the CVaR risk measure for
𝜈-SVC and E𝜈-SVC and show that minimizing CVaR leads to a lower generalization bound,
which will explain why a high generalization performance can be obtained by 𝜈-SVC and
E𝜈-SVC for linearly nonseparable datasets.

A classifier d(x) = sign(𝒘⊤
𝝓(x) − b) is learned on a training set. Here, we assume that such

training samples are drawn from an unknown independent and identically distributed (i.i.d.)
probability distribution P(x, y) on IRn × { ± 1}. The goal of the classification task is to obtain
a classifier d (precisely, (𝒘, b) of d) that minimizes the generalization error defined as

GE[d] ∶=
∫

1{d(x)≠y} dP(x, y),

which corresponds to the misclassification rate for unseen test samples, but unfortunately,
GE[d] cannot be computed since P is unknown. A bound on the generalization error is derived,
as discussed further here, and used for theoretical analysis of the learning model.

We begin with the case of 𝜈 ∈ (𝜈min, 𝜈max), where E𝜈-SVC is equivalent to 𝜈-SVC.

Theorem 10.4 (Takeda and Sugiyama, 2008) Let 𝜈 ∈ (𝜈min, 𝜈max] and L(𝒘, b) = −Y(X𝒘 −
𝟏mb). Suppose that P(x, y) has support in a ball of radius R around the origin. Then, for all
(𝒘, b) such that ‖𝒘‖2 ≤ 1 and CVaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) < 0, there exists a positive constant c
such that the following bound holds with a probability of at least 1 − 𝛿:

GE[d] ≤
|Err(𝜈,𝟏m∕m)(𝒘, b)|

m
+ Γc(VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)))

≤ 𝜈 + Γc(VaR(1−𝜈,𝟏m∕m)(L(𝒘, b))), (10.35)

where

Γc(𝛾) ∶=

√
2
m

(
4c2(R2 + 1)2

𝛾
2

log2(2m) − 1 + log
2
𝛿

)
.
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The generalization error bound in (10.35) is furthermore upper-bounded as

GE[d] ≤ 𝜈 + Γc(CVaR(1−𝜈,𝟏m∕m)(L(𝒘, b))).

The function Γ(𝛾) decreases as |𝛾| increases. Note also that for 𝜈 ∈ (𝜈min, 𝜈max], 𝜈-SVC and,
equivalently, E𝜈-SVC attain a negative minimum CVaR, that is, CVaR(1−𝜈,𝟏m∕m)(L(𝒘⋆

, b⋆)) <
0 (see Section 10.3.1). Accordingly, Theorem 10.4 implies that the minimum generalization
bound regarding (𝒘, b) is attained at an optimal solution of 𝜈-SVC (10.25), which minimizes
CVaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) subject to ‖𝒘‖2 ≤ 1. That is, it is expected that the classifier of 𝜈-SVC
has a small generalization (i.e., out-of-sample) error.

Next, we consider the case of 𝜈 ∈ (0, 𝜈min], for which 𝜈-SVC results in a trivial solution
satisfying 𝒘 = 𝟎, but E𝜈-SVC leads to a reasonable solution. The discussion below depends
on the sign of VaR (see Figure 10.6, where the range (0, 𝜈min) is divided into two subranges
corresponding to a negative VaR or a nonnegative VaR).

Theorem 10.5 (Takeda and Sugiyama, 2008) Let 𝜈 ∈ (0, 𝜈min), and let (𝒘, b) satisfy‖𝒘‖2 = 1.

• Additionally, if (𝒘, b) satisfies VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) < 0, there exists a positive constant c
such that the following bound holds with a probability of at least 1 − 𝛿:

GE[d] ≤ 𝜈 + Γc(VaR(1−𝜈,𝟏m∕m)(L(𝒘, b))).

• On the other hand, if (𝒘, b) satisfies VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) > 0, there exists a positive con-
stant c such that the following bound holds with a probability of at least 1 − 𝛿:

GE[d] ≥ 𝜈 − Γc(VaR(1−𝜈,𝟏m∕m)(L(𝒘, b))).

This theorem implies that the upper bound or lower bound of GE[d] can be lowered if
VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) is reduced; indeed, minimizing VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) with respect
to (𝒘, b) subject to VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) < 0 minimizes the upper bound, while minimiz-
ing VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) subject to VaR(1−𝜈,𝟏m∕m)(L(𝒘, b)) > 0 minimizes the lower bound.
Recalling that VaR is upper-bounded by CVaR and that E𝜈-SVC (10.26) is a CVaR mini-
mization subject to ‖𝒘‖2 = 1, E𝜈-SVC is expected to reduce the generalization error through
minimization of the upper bound or lower bound.

10.4 Duality

In this section, we present the dual problems of the CVaR-minimizing formulations in the
Section 10.3. As mentioned in Section 10.2, dual representations expand the range of algo-
rithms and enrich the theory of SVM.

10.4.1 Binary Classification

As explained in Section 10.1.3, optimization problems (10.22) with C = 1 and (10.25)
(i.e., (10.24) with E = 1), are equivalent formulations of 𝜈-SVC because of the positive
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homogeneity of CVaR and the loss L(𝒘, b) = −Y(X𝒘 − 𝟏mb). Correspondingly, the dual
formulations of the CVaR-based representations (10.22) with C = 1 and (10.25) can be
derived as ||||||

maximize
𝝀

− 1
2‖X⊤Y𝝀‖2

2

subject to y⊤𝝀 = 0,𝝀 ∈ QCVaR(1−𝜈,p),
(10.36)

and ||||||
maximize

𝝀

−‖X⊤Y𝝀‖2

subject to y⊤𝝀 = 0,𝝀 ∈ QCVaR(1−𝜈,p),
(10.37)

with p = 𝟏m∕m.27

By using a kernel function k(x, 𝝃) = 𝝓(x)⊤𝝓(𝝃), we can readily obtain a kernelized nonlinear
classification. Indeed, letting K ∶= XX⊤ and replacing the objective functions of (10.36) and

(10.37) with − 1
2𝝀

⊤YKY𝝀 and −
√
𝝀
⊤YKY𝝀, respectively, each of them becomes a kernelized

formulation.

10.4.2 Geometric Interpretation of 𝜈-SVM

Observe that
∑m

i=1 yi𝜆i = 0 can be rewritten as
∑

i∈I+
𝜆i =

∑
i∈I−

𝜆i and that

𝝀
⊤YKY𝝀 = ‖X⊤Y𝝀‖2

2 = (
m∑

i=1

yi𝝓(xi)𝜆i)2 = (
∑
i∈I+

𝝓(xi)𝜆i −
∑
i∈I−

𝝓(xi)𝜆i)2,

where I+ ∶= {i ∈ {1,… ,m} ∶ yi = +1}, and I− ∶= {1,… ,m}\ I+. With a change of variables
𝝁 ∶= 𝝀∕2, the duals (10.36) and (10.37) can be rewritten as

− ||||||
minimize
𝝃
+
,𝝃
−

1
8‖𝝃+ − 𝝃−‖2

2

subject to 𝝃
+ ∈ D𝜈

+, 𝝃
− ∈ D𝜈

−,
and

− ||||||
minimize
𝝃
+
,𝝃
−

1
2‖𝝃+ − 𝝃−‖2

subject to 𝝃
+ ∈ D𝜈

+, 𝝃
− ∈ D𝜈

−,

where

D𝜈

• ∶= {𝝃 ∈ IRN ∶ 𝝃 =
∑
i∈I•

𝝓(xi)𝜇i,𝝁 ∈ QCVaR(1−𝜈,2p•)}, • ∈ {+,−},

where p+ ∈ IRm+ and p− ∈ IRm− denote vectors whose elements come from p correspond-
ing to i ∈ I+ and i ∈ I−, respectively.28 Accordingly, the dual problems can be interpreted as
ones of finding the nearest two points each belonging to D𝜈

+ and D𝜈

− (see Figure 10.9). These
sets, D𝜈

+ and D𝜈

−, are referred to as reduced convex hulls or soft convex hulls in Bennett and
Bredensteiner (2000) and Crisp and Burges (2000). Indeed, for 𝜈 < 𝜈min, they are equivalent
to the convex hulls of {𝝓(xi) ∶ i ∈ I+} and {𝝓(xi) ∶ i ∈ I−}, respectively; the size of set D𝜈

•
monotonically decreases in 𝜈, that is, D𝜈1

• ⊂ D𝜈2
• for 𝜈1 > 𝜈2; for 𝜈 ≥ 𝜈max, they shrink to their

centers
∑

i∈I•
p•i 𝝓(xi).

27 Obviously, the difference between (10.36) and (10.37) is only in the objective, and in practice, (10.36) is easier to
solve since a quadratic program is more stably solvable than a second-order cone program.
28 m+ = |I+| and m− = |I−|.
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Figure 10.9 Two-dimensional examples of reduced convex hulls. Here, ‘+’ and ‘∘’ represent the data
samples. As 𝜈 increases, the size of each reduced convex hull shrinks. The reduced convex hull is a single
point for 𝜈 = 1, whereas it is equal to the convex hull for 𝜈 sufficiently close to 0. For linearly inseparable
datasets, the corresponding convex hulls (or the reduced convex hulls for a small 𝜈) intersect, and the
primal formulation (10.25) results in a trivial solution satisfying (𝒘, b) = 𝟎.

10.4.3 Geometric Interpretation of the Range of 𝜈 for 𝜈-SVC

Crisp and Burges (2000) pointed out that 𝜈min is the largest 𝜈 such that two reduced convex
hulls D𝜈

+ and D𝜈

− intersect. Namely, 𝜈min is the value such that D𝜈min
+ and D𝜈min− touch externally.

Indeed, 𝜈min can be computed by solving the following optimization problem:

1
𝜈min

∶=
||||||||||||

minimize
𝜂,𝝁+,𝝁−

𝜂

subject to
∑

i∈I+
𝝓(xi)𝜇+

i
=

∑
j∈I−

𝝓(xj)𝜇−
j ,

𝝁
+ ∈ QCVaR(1− 1

𝜂
,

2
m 𝟏m+ )

, 𝝁
− ∈ QCVaR(1− 1

𝜂
,

2
m 𝟏m− )

.

Note that this problem reduces to an LP.
On the other hand, if 𝜈 is smaller than 𝜈min, D𝜈

+ and D𝜈

− intersect, and thus, 𝜈-SVC attains
zero optimal value. This is the geometric interpretation of the trivial solution mentioned in
Section 10.2.1.

However, to make D𝜈

+ and D𝜈

− non-empty, we need to choose 𝜈 satisfying 𝜈 ≤
2m+

m and
𝜈 ≤

2m−
m . Consequently, 𝜈max is defined as min{ 2m+

m ,
2m−

m }.
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10.4.4 Regression

The dual problems for regression (10.21) can be derived in a similar way as the SVC formula-
tions. Using the notation |𝝀| ∶= (|𝜆1|,… , |𝜆m|)⊤, the (kernelized) dual formulation of (10.21)
can be symbolically represented by||||||

maximize
𝝀

− 1
2H𝝀

⊤K𝝀 + y⊤𝝀

subject to 𝟏⊤m𝝀 = 0, |𝝀| ∈ QCVaR(1−𝜈,𝟏m∕m),
(10.38)

where K = (k(xi, xh))i,h with a kernel function k(x, 𝝃) = 𝝓(x)⊤𝝓(𝝃). On the other hand, the
dual of the norm-constrained version (10.31) can be symbolically represented by|||||||

maximize
𝝀

y⊤𝝀 − E
√
𝝀
⊤K𝝀

subject to 𝟏⊤m𝝀 = 0, |𝝀| ∈ QCVaR(1−𝜈,𝟏m∕m).

(10.39)

10.4.5 One-class Classification and SVDD

The (kernelized) dual formulations of the CVaR-based one-class classification (10.28) are
given by ||||||

maximize
𝝀

−𝝀⊤K𝝀

subject to 𝝀 ∈ QCVaR(1−𝜈,𝟏m∕m).
(10.40)

On the other hand, the dual of the CVaR-based SVDD (10.32) is derived as|||||||
maximize

𝝀

∑m
i=1

√
k(xi, xi)𝜆i −

∑m
i=1

∑m
h=1 k(xi, xh)𝜆i𝜆h

subject to 𝝀 ∈ QCVaR(1−𝜈,p).

10.5 Extensions to Robust Optimization Modelings

The assumptions of machine-learning theory do not always fit real situations.29 Some modifi-
cations can be made to bridge the gap between theory and practice. Among them is the robust
optimization modeling (Ben-Tal et al., 2009) option. In this section, we show that two kinds
of robust modeling of the CVaR minimization for binary classification are tractable.

10.5.1 Distributionally Robust Formulation

The uniform distribution p = 𝟏m∕m is reasonable as long as the dataset is i.i.d. sampled. How-
ever, if this does not hold true, the choice p = 𝟏m∕m may not be the best. Let us tackle such

29 For example, the i.i.d. assumption is often violated. In such a situation, it may be better to choose a non-uniform
reference probability.
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Figure 10.10 Convex hull of the union of risk envelopes (m = 3).

uncertainties in the choice of the reference probability p with a min-max strategy. Let P ⊂ IRm

be the set of possible p, and let us call it the uncertainty set. For simplicity, we will assume
that P is closed and bounded. For some P, we replace CVaR(1−𝜈, p)(L) with the distributionally
worst-case CVaR, defined by max

p∈P
CVaR(1−𝜈,p)(L).

Recalling (10.11), the worst-case CVaR is represented by

max
p∈P,q∈QCVaR(1−𝜈,p)

q⊤L = max
q

{q⊤L ∶ q ∈ ∪
p∈P

QCVaR(1−𝜈,p)}

= max
q

{q⊤L ∶ q ∈ conv( ∪
p∈P

QCVaR(1−𝜈,p)}.

The second equality holds because of the linearity of the function q⊤L (see Figure 10.10 for
an illustration of a convex hull of the union of risk envelopes). Note that the above expression
shows that the distributionally worst-case CVaR is coherent as long as ∪p∈PQCVaR(1−𝜈,p) ⊂
IΠm. (Recall the dual representation of the coherent risk measure described in Section 10.1.2.)
Consequently, the distributionally robust 𝜈-SVC can be written as

f⋆P ∶= ||||||
minimize

𝒘,b
max

q
{ − q⊤Y(X𝒘 − 𝟏mb) ∶ q ∈ conv( ∪

p∈P
QCVaR(1−𝜈,p))}

subject to ‖𝒘‖ ≤ 1.
(10.41)

Similar to the case of (10.37), the (kernelized) dual form of (10.41) is derived as30

(f⋆P )2 = |||||||
maximize

𝝀

−𝝀⊤YKY𝝀

subject to y⊤𝝀 = 0,𝝀 ∈ conv( ∪
p∈P

QCVaR(1−𝜈,p)).
(10.42)

For some P, problem (10.42) becomes a tractable convex optimization. Here are special cases
of the examples given in Gotoh and Uryasev (2013).

30 The objective function of (10.42) is squared: −𝝀⊤YKY𝝀 = −𝝀⊤YXX⊤Y𝝀 = −‖X⊤Y𝝀‖2
2.
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Example 10.5 (Finite-scenario uncertainty) If we employ an uncertainty set defined by P =
{p1

,… , pJ}, with J candidates p1
,… , pJ ∈ IΠm, (10.42) can be rewritten as||||||||||

maximize
𝝀,𝝅,𝝉

−𝝀⊤YKY𝝀

subject to y⊤𝝀 = 0, 𝟏⊤m𝝀 = 1, 𝟎 ≤ 𝝀 ≤ 𝝅∕𝜈,

𝝅 =
∑J

k=1 𝜏kpk, 𝟏⊤J 𝝉 = 1, 𝝉 ≥ 𝟎.

This formulation was first presented in Wang (2012), which extends the robust formulation to
a multiclass classification setting.

Example 10.6 (Distance-based uncertainty) If we use an uncertainty set defined by P =
{q ∈ IΠm ∶ q = p + A𝜻 , ‖𝜻‖ ≤ 1}, with p ∈ IΠm, the symmetric positive definite matrix A ∈
IRm×m, and ‖⋅‖ a norm in IRm, (10.42) can be rewritten as||||||||||

maximize
𝝀,𝝅,𝜻

−𝝀⊤YKY𝝀

subject to y⊤𝝀 = 0, 𝟏⊤m𝝀 = 1, 𝟎 ≤ 𝝀 ≤ 𝝅∕𝜈,

𝝅 = p + A𝜻 , 𝟏⊤mA𝜻 = 0, ‖𝜻‖ ≤ 1.

Example 10.7 (Entropy-based uncertainty) If we use an uncertainty set defined by P ={
q ∈ IΠm ∶

∑m
i=1 qi ln(qi∕pi) ≤ t

}
, with t > 0 and p ∈ IΠm such that pi > 0, (10.42) can be

rewritten as |||||||||
maximize

𝝀,𝝅

−𝝀⊤YKY𝝀

subject to y⊤𝝀 = 0, 𝟏⊤m𝝀 = 1, 𝟎 ≤ 𝝀 ≤ 𝝅∕𝜈,∑m
i=1 𝜋i ln(𝜋i∕pi) ≤ t, 𝟏⊤m𝝅 = 1.

These convex optimization problems can be solved using off-the-shelf nonlinear programming
solver software packages.

10.5.2 Measurement-wise Robust Formulation

Aside from the distributionally robust formulation in Section 10.5.1, another form of uncer-
tainty can be introduced to CVaR defined with a linear loss such as L(𝒘, b) = −Y(X𝒘 − 𝟏mb)
and L(𝒘) = −YX𝒘.

Recall that classifiers obtained by SVCs depend on the support vectors, which typically
make up a small subset of samples. Accordingly, they are likely to be susceptible to the
measurement error of a sample, that is, 𝝓(xi) − Δ𝝓(xi). To mitigate the effect of such a per-
turbation, we may be able to use the min-max strategy, similarly to the case of distributionally
robust optimization.

Let us define the set of perturbations as

S ∶= {(𝜹1,… , 𝜹m) ∶ ‖𝜹i‖ ≤ C, i = 1,… ,m},
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where ‖⋅‖ is some norm in IRn. Given S, the worst-case CVaR is defined as

WCVaRS
(𝛼,p)(−Y(X𝒘 − 𝟏mb)) ∶= max

𝚫∈S
CVaR(𝛼,p)(−Y{(X − 𝚫)𝒘 − 𝟏mb}).

This worst-case CVaR enables us to consider variants of 𝜈-SVC. For example, CVaR mini-
mization (10.25) can be modified into||||||

minimize
𝒘,b

WCVaRS
(𝛼,p)(−Y(X𝒘 − 𝟏mb))

subject to ‖𝒘‖2 ≤ 1,
(10.43)

whereas the usual 𝜈-SVC (10.22) can be modified into

minimize
𝒘,b

1
2
‖𝒘‖2

2 + WCVaRS
(𝛼,p)(−Y(X𝒘 − 𝟏mb)). (10.44)

Note that (10.43) and (10.44) are formulated as min-max optimizations. However, we can
represent a robust optimization in a tractable manner by using the following formula.31

Proposition 10.3 (Gotoh and Uryasev, 2013) For any (𝒘, b), we have

WCVaRS
(𝛼,p)(−Y(X𝒘 − 𝟏mb)) = C‖𝒘‖∘ + CVaR(𝛼,p)(−Y(X𝒘 − 𝟏mb)), (10.45)

where ‖⋅‖∘ is the dual norm of ‖⋅‖, that is, ‖x‖∘ ∶= max{x⊤z ∶ ‖z‖ ≤ 1}.

On the basis of formula (10.45), the robust 𝜈-SVC formulations (10.43) and (10.44) can be
rewritten as ||||||

minimize
𝒘,b

C‖𝒘‖∘ + CVaR(𝛼,p)(−Y(X𝒘 − 𝟏mb))

subject to ‖𝒘‖2 ≤ 1,

and |||minimize
𝒘,b

1
2‖𝒘‖2

2 + C‖𝒘‖∘ + CVaR(𝛼,p)(−Y(X𝒘 − 𝟏mb)). (10.46)

Note that in defining S, we do not have to limit the norm ‖⋅‖ to being the 𝓁2-norm. Indeed,
if ‖⋅‖ = ‖⋅‖∞ is used, formulation (10.46) virtually has a regularization term of the form
1
2‖𝒘‖2

2 + C‖𝒘‖1, since ‖⋅‖∘∞ = ‖⋅‖1. In this sense, the min-max strategy yields a justification
of the modified regularization term used in the elastic net (Zou and Hastie, 2005).32

10.6 Literature Review

In this final section, we briefly summarize the related literature and further extensions to the
results described in this chapter.

31 A similar result for C-SVC is derived in Xu et al. (2009), in which a smaller perturbation set is used in place of S .
32 Proposition 10.3 relies on the monotonicity and the translation invariance of CVaR, but we cannot say that the
elastic net is underpinned by the same reasoning. Note that the risk functional of the elastic net satisfies neither of
these properties. However, we can say that DrSVM of Wang et al. (2006), which is a C-SVC with an elastic net-type
regularizer, is underpinned by the reasoning in Xu et al. (2009).
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10.6.1 CVaR as a Risk Measure

The term CVaR was originally introduced by Rockafellar and Uryasev (2000), and tail VaR and
expected shortfall are sometimes used for signifying the same notion. Rockafellar and Uryasev
(2000) show that its minimization can be represented by an LP and the optimal c⋆ in the
minimization formula yields an approximate VaR. Rockafellar and Uryasev (2002) extensively
analyze the basic properties of CVaR and its minimization for general distributions.

On the other hand, the empirical CVaR minimization requires a large number of scenarios to
make an accurate estimation. Indeed, Lim et al. (2011) demonstrate by simulation that CVaR
minimization leads to poor out-of-sample performance.

10.6.2 From CVaR Minimization to SVM

Gotoh and Takeda (2005) were the first to describe the connection between CVaR minimization
and 𝜈-SVM (actually, E𝜈-SVC), while Takeda and Sugiyama (2008) were the first to point out
that the model of Gotoh and Takeda (2005) is equivalent to E𝜈-SVC.

Regarding the robustification of CVaR minimization, Zhu and Fukushima (2009) proposed
a distributionally robust portfolio selection. They consider finite scenarios and norm-based
uncertainty and formulate convex optimization problems without the dual representation of
CVaR. Wang (2012) uses a similar robust optimization modeling to formulate a distributionally
robust multiclass 𝜈-SVC. Gotoh et al. (2014) and Gotoh and Uryasev (2013) extend this robust
modeling to the cases of coherent and convex functionals. Indeed, they extend the examples
in Section 10.5.2 to non-CVaR functionals.

As for the measurement-wise robust 𝜈-SVC, Gotoh and Uryasev (2013) show that any
monotonic and translation-invariant functional results in a regularized empirical functional,
as in Proposition 10.3.

10.6.3 From SVM to CVaR Minimization

On the other hand, the notions used in SVMs can be used in portfolio selection. Indeed, the
two examples of portfolio optimization at the end of Section 10.1.3 are constrained versions of
one-class 𝜈-SVC and 𝜈-SVR. Gotoh and Takeda (2011) present a regularized CVaR minimiza-
tion by placing a norm constraint on the portfolio vector. They use regularization in the same
way as in DeMiguel et al. (2009), where the variance-minimizing portfolio is coupled with
a norm constraint. They develop generalization bounds for a portfolio selection based on the
norm-constrained VaR or CVaR minimization. Gotoh and Takeda (2012) also develop gener-
alization error bounds for portfolio selection and devise a fractional optimization problem on
the basis of the empirical VaR and CVaR. El Karoui et al. (2012) use the asymptotic variance
of the empirical CVaR as a regularizer.

10.6.4 Beyond CVaR

CVaR is the most popular coherent measure of risk (Artzner et al. 1999). The coherence of
CVaR was proven by Pflug (2000) as well as by Rockafellar and Uryasev (2002). It is easy
to see how such a generalized class of risk measures can be incorporated in SVMs. Gotoh
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et al. (2014) apply a coherent measure of risk to SVMs in place of the CVaR of the geometric
margin. By making a straightforward extension of the maximum margin SVC, they can use
a negative geometric margin as the loss and deal with nonconvex optimization. On the other
hand, Gotoh and Uryasev (2013) study SVC formulations on the basis of convex functionals
and discuss what properties of the risk measure affect the SVC formulation. Tsyurmasto et al.
(2013) focus on the positive homogeneity of risk measures.

A generalized risk functional of the form F[L̃] = inf
c
{c + 𝔼ℙ[𝑣(L̃ − c)]}, where 𝑣 is a non-

decreasing convex function on IR, was first studied by Ben-Tal and Teboulle (1986). This
functional is named optimized certainty equivalent (OCE). Note that OCE can be viewed
as a generalization of CVaR, since CVaR is equivalent to OCE when 𝑣(z) = max{z, 0}∕(1 −
𝛼). Kanamori et al. (2013) (unintentionally) apply OCE to SVC as an extension of 𝜈-SVC.
Gotoh and Uryasev (2013) point out that the use of OCE-based SVC is related to the Csiszár
f -divergence (Csiszár, 1967).

Rockafellar and Uryasev (2013) provide a systematic view of risk functionals, named the
risk quadrangle, within which a wide class of convex functionals used in risk management,
statistics, economic theory, and so on are shown to be related to each other. Indeed, CVaR
is associated with quantile regression (Koenker and Bassett, 1978) within the quantile-based
quadrangle.
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This chapter discusses theory and application of generalized linear regression that minimizes
a general error measure of regression residual subject to various constraints on regression
coefficients and includes least-squares linear regression, median regression, quantile regres-
sion, mixed quantile regression, and robust regression as special cases. General error measures
are nonnegative positively homogeneous convex functionals that generalize the notion of
norm and, in general, are asymmetric with respect to ups and downs of a random variable,
which allows one to treat gains and losses differently. Each nondegenerate error measure
E yields the deviation measure D projected from E and the statistic S associated with E .
General deviation measures are also nonnegative positively homogeneous convex functionals,
which, in contrast to error measures, are insensitive to a constant shift. They generalize
the notion of standard deviation, but are not required to be symmetric. General deviation
measures admit dual characterization in terms of risk envelopes, which is instrumental in
devising efficient optimization formulations for minimization of deviation measures. The
central theoretical result in generalized linear regression is the error decomposition theorem
stating that minimization of an error measure of the regression residual can be decomposed
into minimizing the projected deviation measure of the residual without the intercept and
into setting the intercept to the statistic associated with the error measure. The value of this
theorem is that minimization of deviation measures admits dual formulation in terms of
risk envelopes and, as a result, yields efficient optimization formulations. Application of
generalized linear regression includes examples of financial index tracking, sparse signal
reconstruction, therapy treatment planning, collateralized debt obligation, mutual fund
return-based style classification, and mortgage pipeline hedging. The examples also provide
linear program formulations of the corresponding regressions.
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The chapter is organized as follows. The introduction discusses a general setup of linear
regression. Section 11.2 introduces general error and deviation measures, whereas Section 11.3
introduces risk envelopes and risk identifiers. Section 11.4 states the error decomposition
theorem. Sections 11.5, 11.6, and 11.7 formulate least-squares linear regression, median
regression, and quantile regression, respectively, and present application of these regressions
in financial engineering and signal processing. Section 11.7 also formulates mixed quantile
regression as a generalization of quantile regression. Section 11.8 introduces unbiased linear
regression and risk acceptable linear regression with application to financial index tracking.
Section 11.9 discusses robust regression with application to mortgage pipeline hedging.

11.1 Introduction

In statistics, regression analysis aims to find the best relationship between a response random
variable Y (regressant) and n independent variables x1,… , xn (regressors) in the form:

Y = f (x1,… , xn) + 𝜖,

based on m available simultaneous observations of x1,… , xn and Y (regression data):
x1j,… , xnj, yj, j = 1,… ,m, where 𝜖 is the approximation error.

There are two main classes of regression: parametric and nonparametric. If the function
f is determined by a finite set of parameters, regression is called parametric; otherwise, it is
called nonparametric. The class of parametric regressions is further divided into linear and
nonlinear. In linear regression, f is a linear function with respect to unknown parameters,
whereas x1,… , xn can be involved nonlinearly (though, in some definitions, linear regression
is assumed to be linear with respect to x1,… , xn; see, e.g., Hastie et al., 2008). Typically, in
linear regression, f has the form

f (x1,… , xn) = c0 + c1x1 +…+ cnxn = c0 +
n∑

k=1

ckxk, (11.1)

where ck ∈ IR, k = 0, 1,… , n, are unknown regression parameters with c0 called intercept or
bias. (Estimates of c0, c1,… , cn found from the regression data are denoted by ĉ0, ĉ1,… , ĉn,
respectively.) In nonlinear regression, f is a nonlinear function of specified unknown parame-
ters, which are usually found iteratively.

One of the main approaches for finding estimates of regression parameters is to maximize
the likelihood of the observations of y1,… , ym under the assumption that the residuals ej = yj −
f (x1j,… , xnj), j = 1,… ,m, are realizations of independent and identically distributed (i.i.d.)
random variables 𝜖1,… , 𝜖m with zero mean; see van der Waerden (1957). For example, if
𝜖1,… , 𝜖m are i.i.d. and have the normal distribution N(0, 𝜎2), then the likelihood of observing
y1,… , ym is given by

1

(
√

2𝜋𝜎)m

m∏
j=1

exp

(
−

1

2𝜎2

(
yj − f (x1j,… , xnj)

)2
)

,

and its maximization simplifies to

min
m∑

j=1

(yj − f (x1j,… , xnj))2,
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which is called the least-squares method. With f (x1,… , xn) in the form of (11.1), this
minimization problem yields a system of linear equations for estimates ĉ1,… , ĉn:

n∑
k=1

ĉk

n∑
j=1

(xij − x̃i)(xkj − x̃k) =
m∑

j=1

(xij − x̃i)(yj − ỹ), i = 1,… , n, (11.2)

with ĉ0 = ỹ −
∑n

k=1 ckx̃k, where x̃i = 1
n

∑m
j=1 xij for i = 1,… , n and ỹ = 1

n

∑m
j=1 yj.

Even if 𝜖1,… , 𝜖m are only uncorrelated (not necessarily independent) with zero mean and
same variance, the Gauss–Markov theorem states that the best linear unbiased estimator
(BLUE) of the form (11.1) is determined by least-squares linear regression. If 𝜖1,… , 𝜖m
are correlated and/or not identically distributed random variables, then the least-squares
regression may not be appropriate.

Statistical approximation theory takes a different perspective on regression: when the
response random variable Y is not understood completely and is better to be treated as a
function f (X1,… ,Xn) of random variables X1,… ,Xn, the error Y − f (X1,… ,Xn) is sought
to minimize some loss function or error measure with respect to unknown regression
parameters; see Rockafellar et al. (2008). In this approach, central to regression analysis
is the choice of error measure that should conform to risk preferences of an analyst. For
example, if the problem is to track a stock market index by a portfolio of selected financial
instruments, whose returns are random variables X1,… ,Xn, the analyst may penalize only
underperformance of the portfolio return f (X1,… ,Xn) with respect to the index return Y , so
that symmetric measures like ‖⋅‖2 are not appropriate.

This chapter pursues the statistical approximation approach to regression. It focuses on a
general theory of approximating an output random variable Y by a linear combination of input
random variables X1,… ,Xn:

f (X1,… ,Xn) = c0 + c1X1 +…+ cnXn = c0 +
n∑

k=1

ckXk

with an arbitrary error measure E under additional constraints on regression coefficients.

11.2 Error and Deviation Measures

Let (Ω,M,ℙ) be a probability space of elementary events Ω with the sigma-algebra M over
Ω and with a probability measure ℙ on (Ω,M). Random variables are assumed to be mea-
surable real-valued functions from L2(Ω) = L2(Ω,M,ℙ) unless otherwise specified,1 and the
relationships between random variables X and Y (e.g., X ≤ Y and X = Y) are understood to
hold in the almost-sure sense (i.e., ℙ[X ≤ Y] = 1 and ℙ[X = Y] = 1), respectively. Also, inf X
and sup X mean essential infimum and essential supremum of X (i.e., ess inf X and ess sup X),
respectively. Two important integral characteristics of a random variable X are its mean and
variance, defined by

𝜇(X) =
∫Ω

X(𝜔) dℙ[𝜔], 𝜎
2(X) =

∫Ω
(X(𝜔) − 𝜇(X))2 dℙ[𝜔],

1 L2(Ω) is the Lebesgue space of measurable square-integrable functions on Ω: X ∈ L2(Ω) is equivalent to
∫Ω|X(𝜔)|2dℙ[𝜔] < ∞.
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respectively, and 𝜎(X) is called the standard deviation of X. If X ∈ L2(Ω), then 𝜇(X) and 𝜎
2(X)

are well defined (bounded), which explains the choice of L2(Ω).
Rockafellar et al. (2002, 2006a, 2008) introduced error measures as functionals

E ∶ L2(Ω) → [0,∞] satisfying

(E1) Nonnegativity: E(0) = 0, but E(X) > 0 for X ≠ 0; also, E(c) < ∞ for constants c.
(E2) Positive homogeneity: E(𝜆X) = 𝜆E(X) when 𝜆 > 0.
(E3) Subadditivity: E(X + Y) ≤ E(X) + E(Y) for all X and Y .
(E4) Lower semicontinuity: set {X ∈ L2(Ω)|E(X) ≤ c} is closed for all c < ∞.

For example, Lp norms ‖X‖p with p ≥ 1 are error measures. However, error measures are
not required to be symmetric; that is, in general, E(−X) ≠ E(X). An example of an asymmetric
error measure is given by

Ea,b,p(X) = ‖a X+ + b X−‖p, a > 0, b > 0, 1 ≤ p ≤ ∞. (11.3)

Another one is the asymmetric mean absolute error:

E
𝛼
(X) =

1
𝛼

E[𝛼 X+ + (1 − 𝛼) X−], 𝛼 ∈ (0, 1), (11.4)

where X± = max{0,±X}. For 𝛼 = 1∕2, E
𝛼
(X) simplifies to ‖X‖1. Observe that for a = 1

and b = 1, (11.3) simplifies to ‖X‖p, whereas for p = 1, a = 1, and b = 1∕𝛼 − 1, it reduces
to (11.4).

An error measure E is nondegenerate if there exists 𝛿 > 0 such that E(X) ≥ 𝛿 |E[X]| for all
X. For example, (11.3) and (11.4) are both nondegenerate error measures with 𝛿 = min{a, b}
and 𝛿 = min{1, 1∕𝛼 − 1}, respectively; see Rockafellar et al. (2008).

Similar to error measures, Rockafellar et al. (2002, 2006a) introduced deviation measures
as functionals D ∶ L2(Ω) → [0,∞] satisfying

(D1) Nonnegativity: D(X) = 0 for constant X, but D(X) > 0 otherwise.
(D2) Positive homogeneity: D(𝜆X) = 𝜆D(X) when 𝜆 > 0.
(D3) Subadditivity: D(X + Y) ≤ D(X) +D(Y) for all X and Y .
(D4) Lower semicontinuity: set {X ∈ L2(Ω)|D(X) ≤ c} is closed for all c < ∞.

It follows from D1 and D3 that

D(X − c) = D(X) for all constants c,

which is known as insensitivity to constant shift (see Rockafellar et al., 2006a). Axioms D1–D4
generalize well-known properties of the standard deviation; however, they do not imply sym-
metry, so that in general, D(−X) ≠ D(X).

Each error measure E yields a deviation measure through penalties relative to expectation

D(X) = E(X − E[X]), (11.5)

and if E is nondegenerate, it furnishes another deviation through error projection

D(X) = inf
c∈IR

E(X − c), (11.6)
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which is called the deviation of X projected from E ; see Theorem 2.1 in Rockafellar et al.
(2008). A solution to (11.6) is the statistic of X associated with E

S(X) = arg min
c∈IR

E(X − c), (11.7)

which, in general, is an interval [S−(X),S+(X)] of constants with S−(X) = min{c|c ∈ S(X)}
and S+(X) = max{c|c ∈ S(X)}, and has the following properties:

S(X − c) = S(X) − c for any constant c,

S(𝜆 X) = 𝜆 S(X) for any constant𝜆 > 0.

Well-known examples of the relationships (11.6) and (11.7) are given in the following table:

E(X) D(X) S(X)

‖X‖2 𝜎(X) E[X]‖X‖1 ‖X − med (X)‖1 med (X)
1
𝛼

E[𝛼 X+ + (1 − 𝛼) X−] CVaRΔ
𝛼
(X) qX(𝛼) = [q−X (𝛼), q

+
X
(𝛼)]

where med (X) is the median of X (possibly an interval),

q−X (𝛼) = inf {t | FX(t) ≥ 𝛼} and q+X (𝛼) = sup {t | FX(t) ≤ 𝛼}

are lower and upper 𝛼-quantiles, respectively, and CVaRΔ
𝛼
(X) is conditional value at risk

(CVaR) deviation defined by

CVaRΔ
𝛼
(X) = E[X] −

1
𝛼 ∫

𝛼

0
q+X (s) ds. (11.8)

Observe that for E(X) = ‖X‖2, deviations (11.5) and (11.6) coincide, whereas for E(X) =‖X‖1, they are different.
For a given deviation measure D, a nondegenerate error measure can be obtained by inverse

projection

E(X) = D(X) + |E[X]|,
which through (11.6) projects back to D with the associated statistic S(X) = E[X]; see
Rockafellar et al. (2008, Example 2.5).

If E1,… , E l are nondegenerate error measures that project to deviations D1,… ,Dl, respec-
tively, then, for any weights 𝜆1 > 0,… , 𝜆l > 0 with

∑l
k=1 𝜆k = 1,

E(X) = inf
c1,… , cl

𝜆1c1 +…+ 𝜆lcl = 0

l∑
k=1

𝜆k Ek(X − ck)
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is a nondegenerate error measure, which projects to the deviation measure

D(X) =
l∑

k=1

𝜆kDk(X)

with the associated statistic

S(X) =
l∑

k=1

𝜆kSk(X).

See Theorem 2.2 in Rockafellar et al. (2008). As an immediate consequence of this result, we
restate Example 2.6 from Rockafellar et al. (2008).

Example 11.1 (mixed quantiles and mixed-CVaR deviation) For any choice of probability
thresholds 𝛼k ∈ (0, 1) and weights 𝜆1 > 0,… , 𝜆l > 0 with

∑l
k=1 𝜆k = 1,

E(X) = E[X] + inf
c1,… , cl

𝜆1c1 +…+ 𝜆lcl = 0

l∑
k=1

𝜆k

𝛼k
E[max{0, ck − X}] (11.9)

is a nondegenerate error measure called mixed quantile error measure, which projects to the
mixed CVaR deviation

D(X) =
m∑

k=1

𝜆k CVaRΔ
𝛼k
(X),

m∑
k=1

𝜆k = 1, 𝜆k > 0, k = 1,… ,m, (11.10)

with the associated statistic

S(X) =
l∑

k=1

𝜆k qX(𝛼k), qX(𝛼k) = [q−X (𝛼k), q+X (𝛼k)]. (11.11)

11.3 Risk Envelopes and Risk Identifiers

Deviation measures have dual characterization in terms of risk envelopes Q ⊂ L2(Ω) defined
by the following properties:

(Q1) Q is nonempty, closed, and convex;
(Q2) for every nonconstant X, there is some Q ∈ Q such that E[XQ] < E[X]; and
(Q3) E[Q] = 1 for all Q ∈ Q.

There is a one-to-one correspondence between deviation measures and risk envelopes
(Rockafellar et al. 2006a, Theorem 1):

D(X) = E[X] − inf
Q∈Q

E[XQ],

Q = {Q ∈ L2(Ω) | D(X) ≥ E[X] − E[XQ] for all X}. (11.12)
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The elements of Q at which E[XQ] attains infimum for a given X are called risk identifiers
for X:

Q(X) = arg min
Q∈Q

E[XQ].

They are those elements of Q that track the downside of X as closely as possible.
The second relationship in (11.12) implies that the set of risk identifiers for X with respect

to a deviation measure D is determined by

QD(X) = {Q ∈ Q | D(X) = E[(E[X] − X)Q] ≡ Cov(−X,Q)}.

From the optimization perspective, QD(X) is closely related to subdifferential 𝜕D(X) of a
deviation measure D at X, which is the set of subgradients Z ∈ L2(Ω) such that

D(Y) ≥ D(X) + E[(Y − X)Z] for all Y ∈ L2(Ω).

Proposition 1 in Rockafellar et al. (2006b) shows that

𝜕D(X) = 1 −QD(X).

11.3.1 Examples of Deviation Measures D, Corresponding Risk Envelopes
Q, and Sets of Risk Identifiers QD(X)

1. standard deviation D(X) = 𝜎(X) ≡ ‖X − E[X]‖2:

Q = {Q | E[Q] = 1, 𝜎(Q) ≤ 1}, Q
𝜎
(X) =

{
1 −

X − E[X]
𝜎(X)

}
2. standard lower semideviation D(X) = 𝜎−(X) ≡ ‖[X − E[X]]−‖2:

Q = {Q | E[Q] = 1, ‖Q − inf Q‖2 ≤ 1}, Q
𝜎−(X) =

{
1 −

E[Y] − Y
𝜎−(X)

}
,

where Y = [E[X] − X]+
3. mean absolute deviation D(X) = MAD(X) ≡ |X − E[X]|1:

Q = {Q | E[Q] = 1, sup Q − inf Q ≤ 2},

QMAD(X) = {Q = 1 + E[Z] − Z | Z ∈ sign[X − E[X]]}

4. lower worst-case deviation D(X) = E[X] − inf X:

Q = {Q | E[Q] = 1,Q ≥ 0},

QD(X) = {Q | E[Q] = 1,Q ≥ 0,Q(𝜔) = 0 when X(𝜔) > inf X}

5. CVaR deviation D(X) = CVaRΔ
𝛼
(X):

Q = {Q | E[Q] = 1, 0 ≤ Q ≤ 1∕𝛼} (11.13)
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and QCVaRΔ
𝛼

(X) is the set of elements Q such that E[Q] = 1 and

Q(𝜔)
⎧⎪⎨⎪⎩
= 𝛼

−1 on{𝜔 ∈ Ω | X(𝜔) < −VaR
𝛼
(X)},

∈ [0, 𝛼−1] on{𝜔 ∈ Ω | X(𝜔) = −VaR
𝛼
(X)},

= 0 on{𝜔 ∈ Ω | X(𝜔) > −VaR
𝛼
(X)}.

(11.14)

If D1,… ,Dm are deviation measures, then

D(X) =
m∑

k=1

𝜆k Dk(X),
m∑

k=1

𝜆k = 1, 𝜆k > 0, k = 1,… ,m, (11.15)

and
D(X) = max{D1(X),… ,Dm(X)}, (11.16)

are deviation measures as well, for which the risk envelopes are given by Proposition 4 in
Rockafellar et al. (2006a):

Q =
{

closure of
∑m

k=1 𝜆k Qk for (11.15),
closure of the convex hull of ∪m

k=1 Qk for (11.16),

where Q1,… ,Qm are the risk envelopes for the deviation measures D1,… ,Dm. This result
and the formula (11.13) imply that the risk envelope for the mixed CVaR deviation (11.10) is
determined by

Q = closure of
m∑

k=1

𝜆k Qk, where E[Qk] = 1, 0 ≤ Qk ≤ 1∕𝛼k, k = 1,… ,m. (11.17)

Risk identifiers along with risk envelopes are instrumental in formulating optimality con-
ditions and devising optimization procedures in applications involving deviation measures.
For example, if X is discretely distributed with ℙ[X = xk] = pk, k = 1,… , n, then with the
risk envelope representation (11.13), the CVaR deviation (11.8) is readily restated as a linear
program

CVaRΔ
𝛼
(X) = E[X] − min

q1,…,qn

{
n∑

k=1

qkpkxk

||||| qk ∈ [0, 𝛼−1],
n∑

k=1

qkpk = 1

}
,

whereas for the same X, mixed CVaR deviation (11.10) with (11.17) can be represented by

m∑
i=1

𝜆i CVaRΔ
𝛼i
(X) = E[X] − min

qik

{
m,n∑

i,k=1

𝜆i qikpkxk

|||||| qik ∈ [0, 𝛼−1
i ],

n∑
k=1

qikpk = 1

}
.

11.4 Error Decomposition in Regression

An unconstrained generalized linear regression problem is formulated as follows: approx-
imate a random variable Y ∈ L2(Ω) by a linear combination c0 +

∑n
k=1 ckXk of given

random variables Xk ∈ L2(Ω), k = 1,… , n, and minimize an error measure E of the error
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Z = Y − c0 −
∑n

k=1 ckXk with respect to c0, c1,… , cn, where E is assumed to be nondegenerate
and finite everywhere on L2(Ω), or, formally,

min
c0,c1,…,cn

E(Z) with Z = Y − c0 −
n∑

k=1

ckXk. (11.18)

Observe that because of possible asymmetry of E , E(−Z) ≠ E(Z).
Well-known particular cases of the linear regression (11.18) include:

1. Least-squares linear regression with E(Z) = ‖Z‖2;
2. Median regression with E(Z) = ‖Z‖1; and
3. Quantile regression with the asymmetric mean absolute error

E(Z) = 1
𝛼

E[𝛼 Z+ + (1 − 𝛼) Z−],

where Z± = max{0,±Z} and 𝛼 ∈ (0, 1).

The choice of error measure to be used in a given regression problem is determined by the
particular application and risk preferences of a decision maker.

Theorem 3.2 in Rockafellar et al. (2008) shows that the generalized linear regression (11.18)
can be decomposed into minimizing the projected deviation measure of Y −

∑n
k=1 ckXk with

respect to c1,… , cn and into setting the intercept c0 to the associated statistic of optimal
Y −

∑n
k=1 ckXk. In other words, (11.18) is reduced to

min
c1,…,cn

D(Z̃) and c0 ∈ S(Z̃) with Z̃ = Y −
n∑

k=1

ckXk, (11.19)

where D(Z̃) = inf
c∈IR

E(Z̃ − c) is the deviation projected from E , and S(Z̃) = arg min
c∈IR

E(Z̃ − c) is

the statistic associated with E ; see Rockafellar et al. (2008). This result is known as error
decomposition.

Furthermore, Theorem 4.1 in Rockafellar et al. (2008) states that c1,… , cn is a solution to
(11.19) if and only if

there exists Q ∈ QD(Z̃) such that E[(1 − Q)Xj] = 0 for j = 1,… , n, (11.20)

where QD(Z̃) is the risk identifier for Z̃ with respect to deviation measure D; see Rockafellar
et al. (2008).

In many applications (e.g., factor models, index tracking, and replication problems), the
coefficients c0, c1,… , cn are often required to satisfy additional constraints. Let C be a fea-
sible set of n + 1 dimensional vector c = (c0, c1,… , cn). For example, the requirement of
c0, c1,… , cn to be nonnegative translates into having C = {c ∈ IRn+1| c ≥ 0}. In this case, the
generalized linear regression takes the form

min
c0,c1,…,cn

E
(

Y − c0 −
n∑

k=1

ckXk

)
subject to (c0, c1,… , cn) ∈ C. (11.21)

Sections 11.5, 11.6, and 11.7 discuss the problem (11.21) with different error measures E
and feasible sets C frequently arising in various statistical decision applications.
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11.5 Least-Squares Linear Regression

A least-squares linear regression is one of the basic and most widely used statistical tools that
finds its applications in virtually all areas of science dealing with data analysis and statistics
(e.g., physics, biology, medicine, finance, and economics).

Unconstrained least-squares linear regression is a particular case of (11.18) with E(⋅) = ‖⋅‖2
and is given by

min
c0,c1,…,cn

‖‖‖‖‖Y − c0 −
n∑

k=1

ckXk

‖‖‖‖‖
2

2

. (11.22)

The first-order necessary optimality conditions for the optimization problem (11.22) yield
a system of linear equations for c0, c1,… , cn:

⎧⎪⎨⎪⎩
n∑

k=1
ck Cov(Xk,Xj) = Cov(Y ,Xj), j = 1,… , n,

c0 = E[Y] −
n∑

k=1
ck E[Xk].

(11.23)

If the covariance matrix Λ of X1,… ,Xn is nonsingular, then the system can be solved either
numerically or in a closed form through the inverse Λ−1 ∶

(c1,… , cn)⊤ = Λ−1(Cov(Y ,X1),… ,Cov(Y ,Xn))⊤.

This is the main advantage of the least-squares linear regression.
The system (11.23) shows that the least-squares linear regression is solved in two steps: find-

ing c1,… , cn and then determining c0. In fact, for D = 𝜎, the error decomposition formulation
(11.19) takes the form

min
c1,…,cn

𝜎(Z̃) and c0 = E[Z̃], where Z̃ = Y −
n∑

k=1

ckXk,

which states that the least-squares linear regression is equivalent to minimizing variance of
Y −

∑n
k=1 ckXk with respect to c1,… , cn and then setting intercept c0 to the mean of

Y −
∑n

k=1 ckXk. This fact is often taken for granted and may create the impression that the
linear regression with another error measure E also leads to c0 being E[Y −

∑n
k=1 ckXk].

However, this is possible only if the deviation projected from E coincides with the deviation
from the penalties relative to expectation; see Rockafellar et al. (2008).

With the risk identifier corresponding to the standard deviation, that is,

Q
𝜎
(X) =

{
1 −

X − E[X]
𝜎(X)

}
,

the optimality conditions (11.20) can be recast in the form

E

[(
Y −

n∑
k=1

ckXk

)
(Xj − E[Xj])

]
= 0, j = 1,… , n,

which with c0 = E
[
Y −

∑n
k=1 ckXk

]
are equivalent to the system (11.23).
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In contrast to (11.2), the system (11.23) yields “true” c0, c1,… , cn (not estimates) provided
that the expected values E[Y] and E[Xk] and the covariances Cov(Xk,Xj) and Cov(Y ,Xj) are
known. However, in real-life problems, this is almost never the case: we are only given simulta-
neous observations of X1,… ,Xn and Y: x1j,… , xnj, yj, j = 1,… ,m, so that the expected values
and covariances should be estimated through the given data.

In applications, least-squares linear regression is often solved subject to additional con-
straints on regression coefficients and, in general, can be formulated by

min
c0,c1,…,cn

‖‖‖‖‖Y − c0 −
n∑

k=1

ckXk

‖‖‖‖‖2

subject to (c0, c1,… , cn) ∈ C, (11.24)

where C is some feasible set of (c0, c1,… , cn). This problem admits a closed-form solution
only in a few simple cases, for example when C is determined by a set of linear equalities. In
a general case, (11.24) is solved numerically.

Example 11.2 (index tracking with mean square error) Let Y be the daily rate of return
of a stock market index (e.g., S&P 500 and Nasdaq), and let X1,… ,Xn be the daily rates of
return of chosen financial instruments. Suppose a unit capital is to be allocated among these
instruments with capital weights c1,… , cn to replicate the index’s rate of return by a linear
combination of X1,… ,Xn without shorting of the instruments. The imposed requirements on
c1,… , cn correspond to the feasible set

C =

{
(c1,… , cn) ∈ IRn

|||||
n∑

k=1

ck = 1, ck ≥ 0, k = 1,… , n

}
. (11.25)

In this case, optimal allocation positions c1,… , cn can be found through the least-squares
linear regression (11.24) with c0 = 0 and C given by (11.25), which is a quadratic optimization
problem.

Another application of constrained least-squares linear regression is sparse signal recon-
struction, whose objective is to find a decision vector that has few nonzero components and
satisfies certain linear constraints. The SPARCO toolbox offers a wide range of test problems
for benchmarking of algorithms for sparse signal reconstruction; see http://www.cs.ubc
.ca/labs/scl/sparco/. Typically, SPARCO toolbox problems are formulated in one of three
closely related forms: L1Relaxed, L1Relaxed D, and L2 D (or LASSO). Both “L1Relaxed”
and “L1Relaxed D” formulations minimize the L1-error of the regression residual subject
to box constraints on decision variables and subject to a constraint on the L1-norm of the
decision vector.2 The difference in these two formulations is that “L1Relaxed D” splits each
decision variable ci into two nonnegative variables c+

i
= max{ci, 0} and c−i = max{ − ci, 0}

(ci = c+
i
− c−i and |ci| = c+

i
+ c−i ) and, as a result, has all decision variables nonnegative.

Since “L1Relaxed D” doubles the number of the decision variables, in some problems, it may
be less efficient than “L1Relaxed.” The “L2 D” formulation minimizes the weighted sum of
the squared L2-norm of the regression residual and the L1-norm of the vector of regression
coefficients subject to box constraints on the coefficients. As the “L1Relaxed D” formulation,
this one also splits each regression coefficient into two nonnegative parts.

2 L1-norm of a vector is the sum of absolute values of vector components.

http://www.cs.ubc.ca/labs/scl/sparco/
http://www.cs.ubc.ca/labs/scl/sparco/
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Example 11.3 (sparse reconstruction problem from the SPARCO toolbox) Let L(c,X) be
an error function that linearly depends on a decision vector c = (c1,… , cn) and on a given
random vector X = (X1,… ,Xn). The “L2 D” formulation of the sparse reconstruction problem
from the SPARCO toolbox is a regression that minimizes a linear combination of ‖L(c,X)‖2

2
and the regularization part

∑n
i=1 |ci| subject to box constraints li ≤ ci ≤ ui, i = 1,… , n, where

li and ui are given bounds with ui ≥ 0 and li ≤ 0. Let c± = (c±
1
,… , c±n ) with c±

i
= max{ ±

ci, 0}, then ci = c+
i
− c−i and |ci| = c+

i
+ c−i , and the “L2 D” formulation takes the form

min
c+,c−

‖L(c+ − c−,X)‖2
2 + 𝜆

n∑
i=1

(c+i + c−i )

subject to 0 ≤ c+i ≤ ui, 0 ≤ c−i ≤ −li, i = 1,… , n, (11.26)

where 𝜆 is a given parameter.

Constrained least-squares linear regression is also used in an intensity-modulated radia-
tion therapy (IMRT) treatment-planning problem formulated in Men et al. (2008). To penalize
underdosing and overdosing with respect to a given threshold, the problem uses quadratic
one-sided penalties or, equivalently, second-order lower and upper partial moments.

Example 11.4 (therapy treatment planning problem) Let [L(c,X)]+ ≡ max{0,L(c,X)} be
a loss function, where L(x, 𝜃) linearly depends on a decision vector c = (c1,… , cn) and on a
given random vector X = (X1,… ,Xn). The regression problem, arising in intensity-modulated
radiation therapy treatment, minimizes ‖[L(c,X)]+‖2

2 subject to box constraints li ≤ ci ≤ ui
with given bounds li and ui:

min
c1,…,cn

‖[L(c,X)]+‖2
2 subject to li ≤ ci ≤ ui, i = 1,… , n. (11.27)

11.6 Median Regression

In the least-squares linear regression, large values of the error Z = Y − c0 −
∑n

k=1 ckXk are
penalized heavier than small values, which makes the regression coefficients quite sensitive
to outliers. In applications that require equal treatment of small and large errors, the median
regression can be used instead.

Unconstrained median regression is a particular case of (11.18) with E(⋅) = ‖⋅‖1:

min
c0,c1,…,cn

‖‖‖‖‖Y − c0 −
n∑

k=1

ckXk

‖‖‖‖‖1

, (11.28)

for which the error decomposition formulation (11.19) takes the form

min
c1,…,cn

E|Z̃ − med Z̃| and c0 ∈ med Z̃ with Z̃ = Y −
n∑

k=1

ckXk, (11.29)

where med Z̃ is the median of Z̃, which, in general, is any number in the closed interval
[q−

Z̃
(1∕2), q+

Z̃
(1∕2)]. Observe that the median regression does not reduce to minimization of

the mean-absolute deviation (MAD) and that c0 is not the mean of Y −
∑n

k=1 ckXk.
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Let c1,… , cn be an optimal solution to the problem (11.29), and let the random variable Z̃ =
Y −

∑n
k=1 ckXk have no probability “atom” at q+

Z̃
(1∕2); then, the interval med Z̃ is a singleton,

and the optimality conditions (11.20) reduce to

E[Xj − E[Xj]| Z̃ ≤ med Z̃] = 0, j = 1,… , n.

These conditions are, however, rarely used in practice.
In applications, X1,… ,Xn and Y are often assumed to be discretely distributed with

joint probability distribution ℙ[X1 = x1j,… ,Xn = xnj,Y = yj] = pj > 0, j = 1,… ,m, with∑m
j=1 pj = 1. In this case,

‖Z‖1 =
m∑

j=1

pj

|||||yj − c0 −
n∑

k=1

ckxkj

||||| ,

and the median regression (11.28) reduces to the linear program

min
c0, c1,… , cn,

𝜁1,… , 𝜁m

m∑
j=1

pj𝜁j

subject to 𝜁j ≥ yj − c0 −
n∑

k=1

ckxkj, j = 1,… ,m,

𝜁j ≥ c0 +
n∑

k=1

ckxkj − yj, j = 1,… ,m, (11.30)

where 𝜁1,… , 𝜁m are auxiliary variables.
The median regression with constraints on regression coefficients is formulated by

min
c0,c1,…,cn

‖‖‖‖‖Y − c0 −
n∑

k=1

ckXk

‖‖‖‖‖1

subject to (c0, c1,… , cn) ∈ C, (11.31)

where C is a given feasible set of (c0, c1,… , cn). For an arbitrary joint probability distribution
of X1,… ,Xn and Y , the necessary optimality conditions for (11.31) are given in Rockafellar
et al. (2006a).

If X1,… ,Xn and Y are discretely distributed, and C is determined by a set of linear con-
straints, the Equation (11.31) reduces to a linear program.

Example 11.5 (index tracking with mean absolute error) The setting is identical to that
in Example 11.2. But this time, the optimal allocation positions c1,… , cn are found through
the median regression (11.31) with C given by (11.25). If X1,… ,Xn and Y are assumed to
be discretely distributed with joint probability distribution ℙ[X1 = x1j,…, Xn = xnj,Y = yj] =
pj > 0, j = 1,… ,m, where

∑m
j=1 pj = 1, then this regression problem can be formulated as the

linear program

min
c1,… , cn
𝜁1,… , 𝜁m

m∑
j=1

pj𝜁j
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subject to 𝜁j ≥ yj −
n∑

k=1

ckxkj, j = 1,… ,m,

𝜁j ≥

n∑
k=1

ckxkj − yj, j = 1,… ,m,

n∑
k=1

ck = 1, ck ≥ 0, k = 1,… , n,

where 𝜁1,… , 𝜁m are auxiliary variables.

Constrained median regression is also used to design a portfolio of credit default swaps
(CDS) and credit indices to hedge against changes in a collateralized debt obligation (CDO)
book. A CDS provides insurance against the risk of default (credit event) of a particular com-
pany. A buyer of the CDS has the right to sell bonds issued by the company for their face value
when the company is in default. The buyer makes periodic payments to the seller until the end
of the life of the CDS or until a default occurs. The total amount paid per year, as a percentage
of the notional principal, is known as the CDS spread, which is tracked by credit indices. A
CDO is a credit derivative based on defaults of a pool of assets. Its common structure involves
tranching or slicing the credit risk of the reference pool into different risk levels of increas-
ing seniority. The losses first affect the equity (first loss) tranche, then the mezzanine tranche,
and finally the senior and super senior tranches. The hedging problem is to minimize risk of
portfolio losses subject to budget and cardinality constraints on hedge positions. The risk is
measured by mean absolute deviation (MAD) and by L1-norm (mean absolute penalty).

Example 11.6 (median regression and CDO) Let L(c,X) be a loss function in hedging
against changes in a collateralized debt obligation (CDO) book, where L(c,X) linearly
depends on a decision vector c = (c1,… , cn) (positions in financial instruments) and on
a given random vector X = (X1,… ,Xn). A regression problem then minimizes the mean
absolute error of L(c,X) subject to the budget constraint

∑n
i=1 ai|ci| ≤ C with given C and

ai > 0, i = 1,… , n, and subject to a constraint on cardinality of the decision variables not to
exceed a positive integer S:

min
c1,…,cn

‖L(c,X)‖1

subject to
n∑

i=1

ai|ci| ≤ C,

n∑
i=1

I{ai|ci|≥𝑤} ≤ S,

|ci| ≤ ki, i = 1,… , n, (11.32)

where𝑤 is a given threshold; I{⋅} is the indicator function equal to 1 if the condition in the curly
brackets is true, and equal to 0 otherwise; and |ci| ≤ ki, i = 1,… , n, are bounds on decision
variables (positions).
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The next three examples formulate regression problems arising in sparse signal reconstruc-
tion. In all of them, L(c,X) is an error function that linearly depends on a decision vector
c = (c1,… , cn) and on a given random vector X = (X1,… ,Xn), and li ≤ ci ≤ ui, i = 1,… , n,
are box constraints with given bounds li and ui (li ≤ ui).

Example 11.7 (sparse signal reconstruction I: “L1Relaxed” formulation) This regression
problem minimizes the mean absolute error of L(c,X) subject to a constraint on cardinality of
c with given integer bound S and subject to box constraints on c:

min
c1,…,cn

‖L(c,X)‖1

subject to
n∑

i=1

(
I{aici≥𝑤} + I{bici≤−𝑤}

)
≤ S,

li ≤ ci ≤ ui, i = 1,… , n. (11.33)

Example 11.8 (sparse signal reconstruction II) This regression problem minimizes
the mean absolute error of L(c,X) subject to a constraint on the L1-norm of c, that is,∑n

i=1 |ci| ≤ U with given bound U, and subject to box constraints on c:

min
c1,…,cn

‖L(c,X)‖1

subject to
n∑

i=1

|ci| ≤ U,

li ≤ ci ≤ ui, i = 1,… , n. (11.34)

Example 11.9 (sparse signal reconstruction III) This estimation problems minimizes the
cardinality of c subject to constraints on the mean absolute error of L(c,X) and on theL1-norm
of c with given bounds 𝜖 and U, respectively, and subject to box constraints on c:

min
c1,…,cn

n∑
i=1

(
I{aici≥𝑤} + I{bici≤−𝑤}

)
subject to ‖L(c,X)‖1 ≤ 𝜖,

n∑
i=1

|ci| ≤ U,

li ≤ ci ≤ ui, i = 1,… , n. (11.35)

Example 11.10 presents a reformulation of the regression problem (11.34).

Example 11.10 (sparse signal reconstruction from SPARCO toolbox) Suppose the ran-
dom vector X is discretely distributed and takes on values X(1)

,…, X(m) with corresponding
positive probabilities p1,… , pm summing into 1, so that ‖L(c,X)‖1 =

∑m
j=1 pj|L(c,X(j))|. Let
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c±
i
= max{ ± ci, 0}, i = 1,… , n, then ci = c+

i
− c−i and |ci| = c+

i
+ c−i . Given that L(c,X(j)) is

linear with respect to c and that ui ≥ 0 and li ≤ 0, i = 1,… , n, the problem (11.34) can be
restated as the linear program

min
c+, c−

𝜁1,… , 𝜁m

m∑
j=1

pj 𝜁j

subject to
n∑

i=1

(c+i + c−i ) ≤ U,

𝜁j ≥ L(c+ − c−,X(j)), i = 1,… , n,

𝜁j ≥ −L(c+ − c−,X(j)), i = 1,… , n,

0 ≤ c+i ≤ ui, 0 ≤ c−i ≤ −li, i = 1,… , n, (11.36)

where 𝜁1,… , 𝜁m are auxiliary variables.

11.7 Quantile Regression and Mixed Quantile Regression

Both the least-squares linear regression and median regression treat ups and downs of the
regression error equally, which might not be desirable in some applications. For example, in
the index tracking problem from Example 11.2, a decision maker (financial analyst) may use a
quantile regression that minimizes the asymmetric mean absolute error E

𝛼
(Z) = 𝛼

−1E[𝛼 Z+ +
(1 − 𝛼) Z−] of Z = Y − c0 −

∑n
k=1 ckXk for some 𝛼 ∈ (0, 1).

Unconstrained quantile regression is a particular case of the generalized linear regression
(11.18) with the asymmetric mean absolute error measure:

min
c0,c1,…,cn

E[𝛼 Z+ + (1 − 𝛼)Z−] with Z = Y − c0 −
n∑

k=1

ckXk, (11.37)

where Z± = max{ ± Z, 0}; and the multiplier 𝛼−1 in the objective function is omitted. Observe
that for 𝛼 = 1∕2, (11.37) is equivalent to the median regression (11.28).

In this case, the error decomposition formulation (11.19) takes the form

min
c1,…,cn

CVaRΔ
𝛼
(Z̃) and c0 ∈ [q−

Z̃
(𝛼), q+

Z̃
(𝛼)] with Z̃ = Y −

n∑
k=1

ckXk. (11.38)

In other words, the quantile regression (11.37) reduces to minimizing CVaR deviation of
Y −

∑n
k=1 ckXk with respect to c1,… , cn and to setting c0 to any value from the 𝛼-quantile

interval of Y −
∑n

k=1 ckXk.
Let c1,… , cn be an optimal solution to the problem (11.38), and let the random variable

Z̃ = Y −
∑n

k=1 ckXk have no probability “atom” at q+
Z̃
(𝛼), then the interval [q−

Z̃
(𝛼), q+

Z̃
(𝛼)] is a

singleton, and the optimality conditions (11.20) simplify to

E
[
Xj − E[Xj]

||| Z̃ ≤ q+
Z̃
(𝛼)

]
= 0, j = 1,… , n.
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However, in this form, they are rarely used in practice.
If X1,… ,Xn and Y are discretely distributed with joint probability distribution

ℙ[X1 = x1j,…, Xn = xnj,Y = yj] = pj > 0, j = 1,… ,m, where
∑m

j=1 pj = 1, then with
the formula (5) in Rockafellar et al. (2006a), the quantile regression (11.37) can be restated
as the linear program

min
c0, c1,… , cn
𝜁1,… , 𝜁m

m∑
j=1

pj

(
yj − c0 + 𝛼

−1
𝜁j −

n∑
k=1

ckxkj

)

subject to 𝜁j ≥ c0 +
n∑

k=1

ckxkj − yj, 𝜁j ≥ 0, j = 1,… ,m, (11.39)

where 𝜁1,… , 𝜁m are auxiliary variables.
The return-based style classification for a mutual fund is a regression of the fund return

on several indices as explanatory variables, where regression coefficients represent the fund’s
style with respect to each of the indices. In contrast to the least-squares regression, the quantile
regression can assess the impact of explanatory variables on various parts of the regressand dis-
tribution, for example on the 95th and 99th percentiles. Moreover, for a portfolio with exposure
to derivatives, the mean and quantiles of the portfolio return distribution may have quite dif-
ferent regression coefficients for the same explanatory variables. For example, in most cases,
the strategy of investing into naked deep out-of-the-money options behaves like a bond pay-
ing some interest; however, in some rare cases, this strategy may lose significant amounts of
money. With the quantile regression, a fund manager can analyze the impact of a particular
factor on any part of the return distribution. Example 11.11 presents an unconstrained quantile
regression problem arising in the return-based style classification of a mutual fund.

Example 11.11 (quantile regression in style classification) Let L(c,X) be a loss func-
tion that linearly depends on a decision vector c = (c1,… , cn) and on a random vector
X = (X1,… ,Xn) representing uncertain rates of return of n indices as explanatory variables.
The quantile regression (11.37) with L(c,X) in place of Z takes the form

min
c1,…,cn

E[𝛼[L(c,X)]+ + (1 − 𝛼)[L(c,X)]−]. (11.40)

A constrained quantile regression is formulated similarly to (11.37):

min
c0,c1,…,cn

E[𝛼 Z+ + (1 − 𝛼) Z−] with Z = Y − c0 −
n∑

k=1

ckXk

subject to (c0, c1,… , cn) ∈ C, (11.41)

where C is a given feasible set for regression coefficients c0, c1,… , cn.

Example 11.12 (index tracking with asymmetric mean absolute error) The setting is
identical to that in Example 11.2. But this time, the allocation positions c1,… , cn are found
from the constrained quantile regression (11.41) with C given by (11.25). If X1,… ,Xn and
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Y are assumed to be discretely distributed with joint probability distribution ℙ[X1 = x1j,…,
Xn = xnj,Y = yj] = pj > 0, j = 1,… ,m, where

∑m
j=1 pj = 1, then this regression problem can

be formulated as the linear program

min
c1,… , cn
𝜁1,… , 𝜁m

m∑
j=1

pj

(
yj −

n∑
k=1

ckxkj + 𝛼
−1
𝜁j

)

subject to 𝜁j ≥

n∑
k=1

ckxkj − yj, 𝜁j ≥ 0, j = 1,… ,m,

n∑
k=1

ck = 1, ck ≥ 0, k = 1,… , n,

where 𝜁1,… , 𝜁m are auxiliary variables.

The linear regression with the mixed quantile error measure (11.9) is called mixed quan-
tile regression. It generalizes quantile regression and, through error decomoposition, takes the
form

min
c1,… , cn,

C1,… ,Cl

E

[
Y −

n∑
j=1

cjXj

]
+

l∑
k=1

𝜆k

(
1
𝛼k

E

[
max

{
0,Ck −

n∑
j=1

cjXj

}]
− Ck

)

(11.42)

with the intercept c0 determined by

c0 =
l∑

k=1

𝜆k Ck,

where C1,… ,Cl are a solution to (11.42); see Example 3.1 in Rockafellar et al. (2008).
The optimality conditions (11.20) for (11.42) are complicated. However, as the quantile

regression, (11.42) can be reduced to a linear program.

11.8 Special Types of Linear Regression

This section discusses special types of unconstrained and constrained linear regressions
encountered in statistical decision problems.

Often, it is required to find an unbiased linear approximation of an output random variable Y
by a linear combination of input random variables X1,… ,Xn, in which case the approximation
error has zero expected value: E[Y − c0 −

∑n
k=1 ckXk] = 0. A classical example of an unbiased

linear regression is minimizing variance or, equivalently, standard deviation with the intercept
c0 set to c0 = E[Y −

∑n
k=1 ckXk]. If, in this example, the standard deviation is replaced by a

general deviation measure D, we obtain a generalized unbiased linear regression:

min
c1,…,cn

D(Z̃) and c0 = E[Z̃], where Z̃ = Y −
n∑

k=1

ckXk. (11.43)
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In fact, (11.43) is equivalent to minimizing the error measure E(Z) = D(Z) + |E[Z]| of
Z = Y − c0 −

∑n
k=1 ckXk. Observe that in view of the error decomposition theorem (Rockafel-

lar et al., 2008, Theorem 3.2), the generalized linear regression (11.18) with a nondegenerate
error measure E and the unbiased linear regression (11.43) with the deviation measure D
projected from E yield the same c1,… , cn but, in general, different intercepts c0.

Rockafellar et al. (2008) introduced risk acceptable linear regression in which a devia-
tion measure D of the approximation error Z = Y − c0 −

∑n
k=1 ckXk is minimized subject to a

constraint on the averse measure of risk R related to D by R(X) = D(X) − E[X]:

min
c1,…,cn

D(Z) subject to R(Z) = 0 with Z = Y − c0 −
n∑

k=1

ckXk, (11.44)

which is equivalent to

min
c1,…,cn

D(Z̃) and c0 = E(Z̃) −D(Z̃), where Z̃ = Y −
n∑

k=1

ckXk. (11.45)

The unbiased linear regression (11.43) and risk acceptable linear regression (11.45) show
that the intercept c0 could be set based on different requirements.

In general, the risk acceptable regression may minimize either an error measure E or a devi-
ation measure D of the error Z subject to a constraint on a risk measure R of Z not necessarily
related to E or D. Example 11.13 illustrates a risk acceptable regression arising in a portfolio
replication problem with a constraint on CVaR.

Example 11.13 (risk acceptable regression) Let L(c,X) be a portfolio replication error (loss
function) that linearly depends on a decision vector c = (c1,… , cn) and on a random vector
X = (X1,… ,Xn) representing uncertain rates of return of n instruments in a portfolio repli-
cating the S&P 100 index. The risk acceptable regression minimizes the mean absolute error
of L(c,X) subject to the budget constraint

∑n
i=1 ai ci ≤ U with known a1,… , an and U and

subject to a CVaR constraint on the underperformance of the portfolio compared to the index:

min
c1,…,cn

‖L(c,X)‖1

subject to
n∑

i=1

ai ci ≤ U,

CVaR
𝛼
(L(c,X)) ≤ 𝑤,

ci ≥ 0, i = 1,… , n, (11.46)

where 𝛼 and 𝑤 are given.

11.9 Robust Regression

Robust regression aims to reduce influence of sample outliers on regression parameters, espe-
cially when regression error has heavy tails.

In statistics, robustness of an estimator is a well-established notion and is assessed by the
so-called estimator’s breakdown point, which is the proportion of additional arbitrarily large
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observations (outliers) needed to make the estimator unbounded. For example, the sample
mean requires just a single such observation, while the sample median would still be finite
until the proportion of such observations reaches 50%. Consequently, the mean’s breakdown
point is 0%, whereas the median’s breakdown point is 50%.

As in the previous regression setting, suppose Y is approximated by a linear combination of
input random variables X1,… ,Xn with the regression error defined by Z = Y − c0 −

∑n
i=1 ciXi,

where c0, c1,… , cn are unknown regression coefficients. A robust regression minimizes an
error measure of Z that has a nonzero breakdown point. Thus, in this setting, the regression’s
breakdown point is that of the error measure.

Often, a robust regression relies on order statistics of Z and on “trimmed” error measures.
Two popular robust regressions are the least median of squares (LMS) regression, which min-
imizes the median of Z2 and has a 50% breakdown point:

min
c0,c1,…,cn

med (Z2) with Z = Y − c0 −
n∑

i=1

ciXi. (11.47)

and the least-trimmed-squares (LTS) regression, which minimizes the average 𝛼-quantile of
Z2 and has a (1 − 𝛼)⋅100% breakdown point:

min
c0,c1,…,cn

q̄Z2 (𝛼) with Z = Y − c0 −
n∑

i=1

ciXi. (11.48)

Rousseeuw and Driessen (2006) referred to (11.48) as a challenging optimization problem.
Typically, in the LTS regression, 𝛼 is set to be slightly larger than 1∕2. For 𝛼 = 1, q̄Z2 (𝛼) =‖Z‖2

2, and (11.48) reduces to the standard least-squares regression. The LTS regression is
reported to have advantages over the LMS regression or the one that minimizes the 𝛼-quantile
of Z2; see Rousseeuw and Driessen (2006), Rousseeuw and Leroy (1987), and Venables and
Ripley (2002).

Let h be such that h(t) > 0 for t ≠ 0 and h(0) = 0, but not necessarily symmetric
(i.e., h(−t) ≠ h(t) in general). Then, the LMS and LTS regressions have the following
generalization:

1. Minimizing the upper 𝛼-quantile of h(Z):

min
c0,c1,…,cn

q+h(Z)(𝛼) with Z = Y − c0 −
n∑

i=1

ciXi, (11.49)

2. Minimizing the average 𝛼-quantile of h(Z):

min
c0,c1,…,cn

q̄h(Z)(𝛼) with Z = Y − c0 −
n∑

i=1

ciXi. (11.50)

For example, in both (11.49) and (11.50), we may use h(Z) = |Z|p, p ≥ 1. In particular, for
h(Z) = Z2, (11.49) with 𝛼 = 1∕2 corresponds to the LMS regression (11.47), whereas (11.50)
reduces to the LTS regression (11.48).

When h(−t) = h(t), (11.49) and (11.50) do not discriminate positive and negative errors.
This, however, is unlikely to be appropriate for errors with significantly skewed distributions.
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For example, instead of med (Z2) and q̄Z2 (𝛼), we can use two-tailed 𝛼-value-at-risk (VaR)
deviation of the error Z defined by

TwoTailVaRΔ
𝛼
(Z) = VaR1−𝛼(Z) + VaR1−𝛼(−Z)

≡ q−Z (𝛼) − q+Z (1 − 𝛼), 𝛼 ∈ (1∕2, 1]. (11.51)

The definition (11.51) shows that the two-tailed 𝛼-VaR deviation is, in fact, the range between
the upper and lower (1 − 𝛼)-tails of the error Z, which is equivalent to the support of the ran-
dom variable Z with truncated (1 − 𝛼)⋅100% of the “outperformances” and (1 − 𝛼)⋅100% of
“underperformances.” Consequently, the two-tailed 𝛼-VaR deviation has the breakdown point
of (1 − 𝛼)⋅100%. Typically, 𝛼 is chosen to be 0.75 and 0.9.

Robust regression is used in mortgage pipeline hedging. Usually, mortgage lenders
sell mortgages in the secondary market. Alternatively, they can exchange mortgages for
mortgage-backed securities (MBSs) and then sell MBSs in the secondary market. The
mortgage-underwriting process is known as the “pipeline.” Mortgage lenders commit to
a mortgage interest rate while the loan is in process, typically for a period of 30–60 days. If
the rate rises before the loan goes to closing, the value of the loan declines and the lender sells
the loan at a lower price. The risk that mortgages in process will fall in value prior to their
sale is known as mortgage pipeline risk. Lenders often hedge this exposure either by selling
forward their expected closing volume or by shorting either US Treasury notes or futures
contracts. Fallout refers to the percentage of loan commitments that do not go to closing. It
affects the mortgage pipeline risk. As interest rates fall, the fallout rises because borrowers
locked in a mortgage rate are more likely to find better rates with another lender. Conversely,
as rates rise, the percentage of loans that close increases. So, the fallout alters the size of
the pipeline position to be hedged against and, as a result, affects the required size of the
hedging instrument: at lower rates, fewer rate loans will close and a smaller position in the
hedging instrument is needed. To hedge against the fallout risk, lenders often use options on
US Treasury note futures.

Suppose a hedging portfolio is formed out of n hedging instruments with random returns
X1,… ,Xn. A pipeline risk hedging problem is to minimize a deviation measure D of the under-
performance of the hedging portfolio with respect to a random hedging target Y , where short
sales are allowed and transaction costs are ignored. Example 11.14 formulates a robust regres-
sion with the two-tailed 𝛼-VaR deviation used in a mortgage pipeline hedging problem.

Example 11.14 (robust regression with two-tailed 𝜶-VaR deviation) Let a target random
variable Y be approximated by a linear combination of n random variables X1,… ,Xn, then the
robust regression minimizes the two-tailed 𝛼-VaR deviation of the error Y − c0 −

∑n
i=1 ciXi:

min
c0,c1,…,cn

TwoTailVaRΔ
𝛼

(
Y − c0 −

n∑
i=1

ciXi

)
. (11.52)

It has a (1 − 𝛼)⋅100%-breakdown point.
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